Code for the pre-print Constrained adaptive sensing by Mark A. Davenport, Andrew K. Massimino, Deanna Needell, and Tina Woolf
BibTeX reference:
@article{DBLP:journals/corr/DavenportMNW15,
author = {Mark A. Davenport and
Andrew K. Massimino and
Deanna Needell and
Tina Woolf},
title = {Constrained adaptive sensing},
journal = {CoRR},
volume = {abs/1506.05889},
year = {2015},
url = {http://arxiv.org/abs/1506.05889},
timestamp = {Wed, 01 Jul 2015 15:10:24 +0200},
biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/DavenportMNW15},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
Van Den Berg, E., & Friedlander, M. P. (2007). SPGL1: A solver for large-scale sparse reconstruction.
Van Den Berg, E., & Friedlander, M. P. (2008). Probing the Pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing, 31(2), 890-912.
- TFOCS http://cvxr.com/tfocs/
Becker, S. R., Candès, E. J., & Grant, M. C. (2011). Templates for convex cone problems with applications to sparse signal recovery. Mathematical programming computation, 3(3), 165-218.
-
Rice Wavelet toolbox (RWT) http://dsp.rice.edu/software/rice-wavelet-toolbox
-
Image Processing Toolbox
-
`brain.mat' data file for two-dimensional experiments http://www.eecs.berkeley.edu/~mlustig/CS/brain.mat http://www.eecs.berkeley.edu/~mlustig/CS.html
See tester_UnifAndVDS.m
and tester_n_UnifAndVDS.m
.
See `brain_tester.m'.