-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add example of using
PruningPredicate
to datafusion-examples (#9183)
* Add example of using PruningPredicate * prettier * Update datafusion-examples/examples/pruning.rs * Apply suggestions from code review Co-authored-by: Chunchun Ye <[email protected]> --------- Co-authored-by: Chunchun Ye <[email protected]>
- Loading branch information
1 parent
5b3aacc
commit a48e271
Showing
3 changed files
with
195 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use arrow::array::{ArrayRef, BooleanArray, Int32Array}; | ||
use arrow::datatypes::{DataType, Field, Schema, SchemaRef}; | ||
use datafusion::common::{DFSchema, ScalarValue}; | ||
use datafusion::execution::context::ExecutionProps; | ||
use datafusion::physical_expr::create_physical_expr; | ||
use datafusion::physical_optimizer::pruning::{PruningPredicate, PruningStatistics}; | ||
use datafusion::prelude::*; | ||
use std::collections::HashSet; | ||
use std::sync::Arc; | ||
|
||
/// This example shows how to use DataFusion's `PruningPredicate` to prove | ||
/// filter expressions can never be true based on statistics such as min/max | ||
/// values of columns. | ||
/// | ||
/// The process is called "pruning" and is commonly used in query engines to | ||
/// quickly eliminate entire files / partitions / row groups of data from | ||
/// consideration using statistical information from a catalog or other | ||
/// metadata. | ||
#[tokio::main] | ||
async fn main() { | ||
// In this example, we'll use the PruningPredicate to determine if | ||
// the expression `x = 5 AND y = 10` can never be true based on statistics | ||
|
||
// Start with the expression `x = 5 AND y = 10` | ||
let expr = col("x").eq(lit(5)).and(col("y").eq(lit(10))); | ||
|
||
// We can analyze this predicate using information provided by the | ||
// `PruningStatistics` trait, in this case we'll use a simple catalog that | ||
// models three files. For all rows in each file: | ||
// | ||
// File 1: x has values between `4` and `6` | ||
// y has the value 10 | ||
// | ||
// File 2: x has values between `4` and `6` | ||
// y has the value of `7` | ||
// | ||
// File 3: x has the value 1 | ||
// nothing is known about the value of y | ||
let my_catalog = MyCatalog::new(); | ||
|
||
// Create a `PruningPredicate`. | ||
// | ||
// Note the predicate does not automatically coerce types or simplify | ||
// expressions. See expr_api.rs examples for how to do this if required | ||
let predicate = create_pruning_predicate(expr, &my_catalog.schema); | ||
|
||
// Evaluate the predicate for the three files in the catalog | ||
let prune_results = predicate.prune(&my_catalog).unwrap(); | ||
println!("Pruning results: {prune_results:?}"); | ||
|
||
// The result is a `Vec` of bool values, one for each file in the catalog | ||
assert_eq!( | ||
prune_results, | ||
vec![ | ||
// File 1: `x = 5 AND y = 10` can evaluate to true if x has values | ||
// between `4` and `6`, y has the value `10`, so the file can not be | ||
// skipped | ||
// | ||
// NOTE this doesn't mean there actually are rows that evaluate to | ||
// true, but the pruning predicate can't prove there aren't any. | ||
true, | ||
// File 2: `x = 5 AND y = 10` can never evaluate to true because y | ||
// has only the value of 7. Thus this file can be skipped. | ||
false, | ||
// File 3: `x = 5 AND y = 10` can never evaluate to true because x | ||
// has the value `1`, and for any value of `y` the expression will | ||
// evaluate to false (`x = 5 AND y = 10 -->` false AND null` --> `false`). Thus this file can also be | ||
// skipped. | ||
false | ||
] | ||
); | ||
} | ||
|
||
/// A simple model catalog that has information about the three files that store | ||
/// data for a table with two columns (x and y). | ||
struct MyCatalog { | ||
schema: SchemaRef, | ||
// (min, max) for x | ||
x_values: Vec<(Option<i32>, Option<i32>)>, | ||
// (min, max) for y | ||
y_values: Vec<(Option<i32>, Option<i32>)>, | ||
} | ||
impl MyCatalog { | ||
fn new() -> Self { | ||
MyCatalog { | ||
schema: Arc::new(Schema::new(vec![ | ||
Field::new("x", DataType::Int32, false), | ||
Field::new("y", DataType::Int32, false), | ||
])), | ||
x_values: vec![ | ||
// File 1: x has values between `4` and `6` | ||
(Some(4), Some(6)), | ||
// File 2: x has values between `4` and `6` | ||
(Some(4), Some(6)), | ||
// File 3: x has the value 1 | ||
(Some(1), Some(1)), | ||
], | ||
y_values: vec![ | ||
// File 1: y has the value 10 | ||
(Some(10), Some(10)), | ||
// File 2: y has the value of `7` | ||
(Some(7), Some(7)), | ||
// File 3: nothing is known about the value of y. This is | ||
// represented as (None, None). | ||
// | ||
// Note, returning null means the value isn't known, NOT | ||
// that we know the entire column is null. | ||
(None, None), | ||
], | ||
} | ||
} | ||
} | ||
|
||
/// We communicate the statistical information to DataFusion by implementing the | ||
/// PruningStatistics trait. | ||
impl PruningStatistics for MyCatalog { | ||
fn num_containers(&self) -> usize { | ||
// there are 3 files in this "catalog", and thus each array returned | ||
// from min_values and max_values also has 3 elements | ||
3 | ||
} | ||
|
||
fn min_values(&self, column: &Column) -> Option<ArrayRef> { | ||
// The pruning predicate evaluates the bounds for multiple expressions | ||
// at once, so return an array with an element for the minimum value in | ||
// each file | ||
match column.name.as_str() { | ||
"x" => Some(i32_array(self.x_values.iter().map(|(min, _)| min))), | ||
"y" => Some(i32_array(self.y_values.iter().map(|(min, _)| min))), | ||
name => panic!("unknown column name: {name}"), | ||
} | ||
} | ||
|
||
fn max_values(&self, column: &Column) -> Option<ArrayRef> { | ||
// similarly to min_values, return an array with an element for the | ||
// maximum value in each file | ||
match column.name.as_str() { | ||
"x" => Some(i32_array(self.x_values.iter().map(|(_, max)| max))), | ||
"y" => Some(i32_array(self.y_values.iter().map(|(_, max)| max))), | ||
name => panic!("unknown column name: {name}"), | ||
} | ||
} | ||
|
||
fn null_counts(&self, _column: &Column) -> Option<ArrayRef> { | ||
// In this example, we know nothing about the number of nulls | ||
None | ||
} | ||
|
||
fn contained( | ||
&self, | ||
_column: &Column, | ||
_values: &HashSet<ScalarValue>, | ||
) -> Option<BooleanArray> { | ||
// this method can be used to implement Bloom filter like filtering | ||
// but we do not illustrate that here | ||
None | ||
} | ||
} | ||
|
||
fn create_pruning_predicate(expr: Expr, schema: &SchemaRef) -> PruningPredicate { | ||
let df_schema = DFSchema::try_from(schema.as_ref().clone()).unwrap(); | ||
let props = ExecutionProps::new(); | ||
let physical_expr = create_physical_expr(&expr, &df_schema, &props).unwrap(); | ||
PruningPredicate::try_new(physical_expr, schema.clone()).unwrap() | ||
} | ||
|
||
fn i32_array<'a>(values: impl Iterator<Item = &'a Option<i32>>) -> ArrayRef { | ||
Arc::new(Int32Array::from_iter(values.cloned())) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters