Skip to content

Commit

Permalink
Vectorized hash grouping (#6904)
Browse files Browse the repository at this point in the history
* Vectorized hash grouping

* Prepare for merge to main

* Improve comments and update size calculations

* Implement test for accumulate_boolean

refactor

* Use resize instead of resize_with

* fix avg size calculation

* Simplify sum accumulator

* Add comments explaining i64 as counts

* Clarify `aggreate_arguments`

* Apply suggestions from code review

Co-authored-by: Mustafa Akur <[email protected]>

* Clarify rationale for ScratchSpace being a field

* use slice syntax

* Update datafusion/physical-expr/src/aggregate/average.rs

Co-authored-by: Mustafa Akur <[email protected]>

* Update datafusion/physical-expr/src/aggregate/count.rs

Co-authored-by: Mustafa Akur <[email protected]>

* Update datafusion/physical-expr/src/aggregate/groups_accumulator/adapter.rs

Co-authored-by: Mustafa Akur <[email protected]>

* fix diagram

* Update datafusion/physical-expr/src/aggregate/groups_accumulator/adapter.rs

Co-authored-by: Mustafa Akur <[email protected]>

* simplify the supported logic

* Add a log message when using slow adapter

* fmt

* Revert "chore(deps): update bigdecimal requirement from 0.3.0 to 0.4.0 (#6848)" (#6896)

This reverts commit d0def42.

* Make FileScanConfig::project pub (#6931)

Co-authored-by: Daniël Heres <[email protected]>

* feat: add round trip test of physical plan in tpch unit tests (#6918)

* Use thiserror to implement the From trait for DFSqlLogicTestError (#6924)

* parallel csv scan (#6801)

* parallel csv scan

* add max line length

* Update according to review comments

* Update Configuration doc

---------

Co-authored-by: Andrew Lamb <[email protected]>

* Add additional test coverage for aggregaes using dates/times/timestamps/decimals (#6939)

* Add additional test coverage for aggregaes using dates/times/timestamps/decimals

* Add coverage for date32/date64

* Support timestamp types for min/max

* Fix aggregate nullability calculation

---------

Co-authored-by: Mustafa Akur <[email protected]>
Co-authored-by: Daniël Heres <[email protected]>
Co-authored-by: Daniël Heres <[email protected]>
Co-authored-by: r.4ntix <[email protected]>
Co-authored-by: Jonah Gao <[email protected]>
Co-authored-by: Yongting You <[email protected]>
  • Loading branch information
7 people authored Jul 13, 2023
1 parent 46182c8 commit e0cc8c8
Show file tree
Hide file tree
Showing 21 changed files with 3,056 additions and 575 deletions.
2 changes: 1 addition & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -56,4 +56,4 @@ lto = false
opt-level = 3
overflow-checks = false
panic = 'unwind'
rpath = false
rpath = false
1 change: 1 addition & 0 deletions datafusion-cli/Cargo.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion datafusion/core/src/physical_plan/aggregates/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -998,7 +998,7 @@ fn group_schema(schema: &Schema, group_count: usize) -> SchemaRef {
Arc::new(Schema::new(group_fields))
}

/// returns physical expressions to evaluate against a batch
/// returns physical expressions for arguments to evaluate against a batch
/// The expressions are different depending on `mode`:
/// * Partial: AggregateExpr::expressions
/// * Final: columns of `AggregateExpr::state_fields()`
Expand Down
901 changes: 356 additions & 545 deletions datafusion/core/src/physical_plan/aggregates/row_hash.rs

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -515,7 +515,7 @@ impl PartitionEvaluator for OddCounter {
println!("evaluate, values: {values:#?}, range: {range:?}");

self.test_state.inc_evaluate_called();
let values: &Int64Array = values.get(0).unwrap().as_primitive();
let values: &Int64Array = values[0].as_primitive();
let values = values.slice(range.start, range.len());
let scalar = ScalarValue::Int64(
match (odd_count(&values), self.test_state.null_for_zero) {
Expand All @@ -534,10 +534,7 @@ impl PartitionEvaluator for OddCounter {
println!("evaluate_all, values: {values:#?}, num_rows: {num_rows}");

self.test_state.inc_evaluate_all_called();
Ok(odd_count_arr(
values.get(0).unwrap().as_primitive(),
num_rows,
))
Ok(odd_count_arr(values[0].as_primitive(), num_rows))
}

fn evaluate_all_with_rank(
Expand Down
8 changes: 8 additions & 0 deletions datafusion/execution/src/memory_pool/proxy.rs
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,11 @@ pub trait VecAllocExt {

/// [Push](Vec::push) new element to vector and store additional allocated bytes in `accounting` (additive).
fn push_accounted(&mut self, x: Self::T, accounting: &mut usize);

/// Return the amount of memory allocated by this Vec (not
/// recursively counting any heap allocations contained within the
/// structure). Does not include the size of `self`
fn allocated_size(&self) -> usize;
}

impl<T> VecAllocExt for Vec<T> {
Expand All @@ -44,6 +49,9 @@ impl<T> VecAllocExt for Vec<T> {

self.push(x);
}
fn allocated_size(&self) -> usize {
std::mem::size_of::<T>() * self.capacity()
}
}

/// Extension trait for [`RawTable`] to account for allocations.
Expand Down
1 change: 1 addition & 0 deletions datafusion/physical-expr/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@ indexmap = "2.0.0"
itertools = { version = "0.11", features = ["use_std"] }
lazy_static = { version = "^1.4.0" }
libc = "0.2.140"
log = "^0.4"
md-5 = { version = "^0.10.0", optional = true }
paste = "^1.0"
petgraph = "0.6.2"
Expand Down
242 changes: 239 additions & 3 deletions datafusion/physical-expr/src/aggregate/average.rs
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,14 @@

//! Defines physical expressions that can evaluated at runtime during query execution
use arrow::array::{AsArray, PrimitiveBuilder};
use log::debug;

use std::any::Any;
use std::convert::TryFrom;
use std::sync::Arc;

use crate::aggregate::groups_accumulator::accumulate::NullState;
use crate::aggregate::row_accumulator::{
is_row_accumulator_support_dtype, RowAccumulator,
};
Expand All @@ -29,19 +33,23 @@ use crate::aggregate::sum::sum_batch;
use crate::aggregate::utils::calculate_result_decimal_for_avg;
use crate::aggregate::utils::down_cast_any_ref;
use crate::expressions::format_state_name;
use crate::{AggregateExpr, PhysicalExpr};
use crate::{AggregateExpr, GroupsAccumulator, PhysicalExpr};
use arrow::compute;
use arrow::datatypes::DataType;
use arrow::datatypes::{DataType, Decimal128Type, Float64Type, UInt64Type};
use arrow::{
array::{ArrayRef, UInt64Array},
datatypes::Field,
};
use arrow_array::Array;
use arrow_array::{
Array, ArrowNativeTypeOp, ArrowNumericType, ArrowPrimitiveType, PrimitiveArray,
};
use datafusion_common::{downcast_value, ScalarValue};
use datafusion_common::{DataFusionError, Result};
use datafusion_expr::Accumulator;
use datafusion_row::accessor::RowAccessor;

use super::utils::{adjust_output_array, Decimal128Averager};

/// AVG aggregate expression
#[derive(Debug, Clone)]
pub struct Avg {
Expand Down Expand Up @@ -155,6 +163,50 @@ impl AggregateExpr for Avg {
&self.rt_data_type,
)?))
}

fn groups_accumulator_supported(&self) -> bool {
use DataType::*;

matches!(&self.rt_data_type, Float64 | Decimal128(_, _))
}

fn create_groups_accumulator(&self) -> Result<Box<dyn GroupsAccumulator>> {
use DataType::*;
// instantiate specialized accumulator based for the type
match (&self.sum_data_type, &self.rt_data_type) {
(Float64, Float64) => {
Ok(Box::new(AvgGroupsAccumulator::<Float64Type, _>::new(
&self.sum_data_type,
&self.rt_data_type,
|sum: f64, count: u64| Ok(sum / count as f64),
)))
}
(
Decimal128(_sum_precision, sum_scale),
Decimal128(target_precision, target_scale),
) => {
let decimal_averager = Decimal128Averager::try_new(
*sum_scale,
*target_precision,
*target_scale,
)?;

let avg_fn =
move |sum: i128, count: u64| decimal_averager.avg(sum, count as i128);

Ok(Box::new(AvgGroupsAccumulator::<Decimal128Type, _>::new(
&self.sum_data_type,
&self.rt_data_type,
avg_fn,
)))
}

_ => Err(DataFusionError::NotImplemented(format!(
"AvgGroupsAccumulator for ({} --> {})",
self.sum_data_type, self.rt_data_type,
))),
}
}
}

impl PartialEq<dyn Any> for Avg {
Expand Down Expand Up @@ -383,6 +435,190 @@ impl RowAccumulator for AvgRowAccumulator {
}
}

/// An accumulator to compute the average of `[PrimitiveArray<T>]`.
/// Stores values as native types, and does overflow checking
///
/// F: Function that calculates the average value from a sum of
/// T::Native and a total count
#[derive(Debug)]
struct AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, u64) -> Result<T::Native> + Send,
{
/// The type of the internal sum
sum_data_type: DataType,

/// The type of the returned sum
return_data_type: DataType,

/// Count per group (use u64 to make UInt64Array)
counts: Vec<u64>,

/// Sums per group, stored as the native type
sums: Vec<T::Native>,

/// Track nulls in the input / filters
null_state: NullState,

/// Function that computes the final average (value / count)
avg_fn: F,
}

impl<T, F> AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, u64) -> Result<T::Native> + Send,
{
pub fn new(sum_data_type: &DataType, return_data_type: &DataType, avg_fn: F) -> Self {
debug!(
"AvgGroupsAccumulator ({}, sum type: {sum_data_type:?}) --> {return_data_type:?}",
std::any::type_name::<T>()
);

Self {
return_data_type: return_data_type.clone(),
sum_data_type: sum_data_type.clone(),
counts: vec![],
sums: vec![],
null_state: NullState::new(),
avg_fn,
}
}
}

impl<T, F> GroupsAccumulator for AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, u64) -> Result<T::Native> + Send,
{
fn update_batch(
&mut self,
values: &[ArrayRef],
group_indices: &[usize],
opt_filter: Option<&arrow_array::BooleanArray>,
total_num_groups: usize,
) -> Result<()> {
assert_eq!(values.len(), 1, "single argument to update_batch");
let values = values[0].as_primitive::<T>();

// increment counts, update sums
self.counts.resize(total_num_groups, 0);
self.sums.resize(total_num_groups, T::default_value());
self.null_state.accumulate(
group_indices,
values,
opt_filter,
total_num_groups,
|group_index, new_value| {
let sum = &mut self.sums[group_index];
*sum = sum.add_wrapping(new_value);

self.counts[group_index] += 1;
},
);

Ok(())
}

fn merge_batch(
&mut self,
values: &[ArrayRef],
group_indices: &[usize],
opt_filter: Option<&arrow_array::BooleanArray>,
total_num_groups: usize,
) -> Result<()> {
assert_eq!(values.len(), 2, "two arguments to merge_batch");
// first batch is counts, second is partial sums
let partial_counts = values[0].as_primitive::<UInt64Type>();
let partial_sums = values[1].as_primitive::<T>();
// update counts with partial counts
self.counts.resize(total_num_groups, 0);
self.null_state.accumulate(
group_indices,
partial_counts,
opt_filter,
total_num_groups,
|group_index, partial_count| {
self.counts[group_index] += partial_count;
},
);

// update sums
self.sums.resize(total_num_groups, T::default_value());
self.null_state.accumulate(
group_indices,
partial_sums,
opt_filter,
total_num_groups,
|group_index, new_value: <T as ArrowPrimitiveType>::Native| {
let sum = &mut self.sums[group_index];
*sum = sum.add_wrapping(new_value);
},
);

Ok(())
}

fn evaluate(&mut self) -> Result<ArrayRef> {
let counts = std::mem::take(&mut self.counts);
let sums = std::mem::take(&mut self.sums);
let nulls = self.null_state.build();

assert_eq!(nulls.len(), sums.len());
assert_eq!(counts.len(), sums.len());

// don't evaluate averages with null inputs to avoid errors on null values

let array: PrimitiveArray<T> = if nulls.null_count() > 0 {
let mut builder = PrimitiveBuilder::<T>::with_capacity(nulls.len());
let iter = sums.into_iter().zip(counts.into_iter()).zip(nulls.iter());

for ((sum, count), is_valid) in iter {
if is_valid {
builder.append_value((self.avg_fn)(sum, count)?)
} else {
builder.append_null();
}
}
builder.finish()
} else {
let averages: Vec<T::Native> = sums
.into_iter()
.zip(counts.into_iter())
.map(|(sum, count)| (self.avg_fn)(sum, count))
.collect::<Result<Vec<_>>>()?;
PrimitiveArray::new(averages.into(), Some(nulls)) // no copy
};

// fix up decimal precision and scale for decimals
let array = adjust_output_array(&self.return_data_type, Arc::new(array))?;

Ok(array)
}

// return arrays for sums and counts
fn state(&mut self) -> Result<Vec<ArrayRef>> {
let nulls = Some(self.null_state.build());
let counts = std::mem::take(&mut self.counts);
let counts = UInt64Array::new(counts.into(), nulls.clone()); // zero copy

let sums = std::mem::take(&mut self.sums);
let sums = PrimitiveArray::<T>::new(sums.into(), nulls); // zero copy
let sums = adjust_output_array(&self.sum_data_type, Arc::new(sums))?;

Ok(vec![
Arc::new(counts) as ArrayRef,
Arc::new(sums) as ArrayRef,
])
}

fn size(&self) -> usize {
self.counts.capacity() * std::mem::size_of::<u64>()
+ self.sums.capacity() * std::mem::size_of::<T>()
}
}

#[cfg(test)]
mod tests {
use super::*;
Expand Down
Loading

0 comments on commit e0cc8c8

Please sign in to comment.