Skip to content

Commit

Permalink
Support spark 3.4 shim layer in gluten
Browse files Browse the repository at this point in the history
  • Loading branch information
JkSelf committed Oct 14, 2023
1 parent 4a4f0ff commit af113bd
Show file tree
Hide file tree
Showing 40 changed files with 1,322 additions and 474 deletions.
13 changes: 13 additions & 0 deletions .github/workflows/velox_be.yml
Original file line number Diff line number Diff line change
Expand Up @@ -269,6 +269,19 @@ jobs:
--local --preset=velox --benchmark-type=h --error-on-memleak --disable-aqe --off-heap-size=10g -s=1.0 --threads=16 --iterations=1 \
&& GLUTEN_IT_JVM_ARGS=-Xmx20G sbin/gluten-it.sh queries-compare \
--local --preset=velox --benchmark-type=ds --error-on-memleak --off-heap-size=30g -s=10.0 --threads=32 --iterations=1'
- name: Build for Spark 3.4.1
run: |
docker exec ubuntu2204-test-$GITHUB_RUN_ID bash -c '
cd /opt/gluten && \
mvn clean install -Pspark-3.4 -Pbackends-velox -Prss -DskipTests'
- name: TPC-H SF1.0 && TPC-DS SF10.0 Parquet local spark3.4
run: |
docker exec ubuntu2204-test-$GITHUB_RUN_ID bash -c 'cd /opt/gluten/tools/gluten-it && \
mvn clean install -Pspark-3.4 \
&& GLUTEN_IT_JVM_ARGS=-Xmx5G sbin/gluten-it.sh queries-compare \
--local --preset=velox --benchmark-type=h --error-on-memleak --disable-aqe --off-heap-size=10g -s=1.0 --threads=16 --iterations=1 \
&& GLUTEN_IT_JVM_ARGS=-Xmx20G sbin/gluten-it.sh queries-compare \
--local --preset=velox --benchmark-type=ds --error-on-memleak --off-heap-size=30g -s=10.0 --threads=32 --iterations=1'
- name: Exit docker container
if: ${{ always() }}
run: |
Expand Down
12 changes: 6 additions & 6 deletions dev/builddeps-veloxbe.sh
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ set -exu

CURRENT_DIR=$(cd "$(dirname "$BASH_SOURCE")"; pwd)
GLUTEN_DIR="$CURRENT_DIR/.."
BUILD_TYPE=Release
BUILD_TYPE=Debug
BUILD_TESTS=OFF
BUILD_EXAMPLES=OFF
BUILD_BENCHMARKS=OFF
Expand Down Expand Up @@ -99,11 +99,11 @@ if [ "$ENABLE_VCPKG" = "ON" ]; then
fi

##install arrow
if [ "$SKIP_BUILD_EP" != "ON" ]; then
cd $GLUTEN_DIR/ep/build-arrow/src
./get_arrow.sh --enable_custom_codec=$ARROW_ENABLE_CUSTOM_CODEC
./build_arrow.sh --build_type=$BUILD_TYPE --enable_ep_cache=$ENABLE_EP_CACHE
fi
#if [ "$SKIP_BUILD_EP" != "ON" ]; then
# cd $GLUTEN_DIR/ep/build-arrow/src
# ./get_arrow.sh --enable_custom_codec=$ARROW_ENABLE_CUSTOM_CODEC
# ./build_arrow.sh --build_type=$BUILD_TYPE --enable_ep_cache=$ENABLE_EP_CACHE
#fi

##install velox
if [ "$SKIP_BUILD_EP" != "ON" ]; then
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ import io.glutenproject.expression.{ConverterUtils, ExpressionConverter, Express
import io.glutenproject.extension.{GlutenPlan, ValidationResult}
import io.glutenproject.extension.columnar.TransformHints
import io.glutenproject.metrics.MetricsUpdater
import io.glutenproject.sql.shims.SparkShimLoader
import io.glutenproject.substrait.`type`.{TypeBuilder, TypeNode}
import io.glutenproject.substrait.SubstraitContext
import io.glutenproject.substrait.expression.ExpressionNode
Expand Down Expand Up @@ -562,7 +563,7 @@ object FilterHandler {
batchScan.output,
scan,
leftFilters ++ newPartitionFilters,
batchScan.table)
table = SparkShimLoader.getSparkShims.getBatchScanExecTable(batchScan))
case _ =>
if (batchScan.runtimeFilters.isEmpty) {
throw new UnsupportedOperationException(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ import io.glutenproject.GlutenConfig
import io.glutenproject.backendsapi.BackendsApiManager
import io.glutenproject.extension.ValidationResult
import io.glutenproject.metrics.MetricsUpdater
import io.glutenproject.sql.shims.SparkShimLoader
import io.glutenproject.substrait.rel.LocalFilesNode.ReadFileFormat

import org.apache.spark.rdd.RDD
Expand All @@ -45,22 +46,13 @@ class BatchScanExecTransformer(
output: Seq[AttributeReference],
@transient scan: Scan,
runtimeFilters: Seq[Expression],
@transient table: Table,
keyGroupedPartitioning: Option[Seq[Expression]] = None,
ordering: Option[Seq[SortOrder]] = None,
@transient table: Table,
commonPartitionValues: Option[Seq[(InternalRow, Int)]] = None,
applyPartialClustering: Boolean = false,
replicatePartitions: Boolean = false)
extends BatchScanExecShim(
output,
scan,
runtimeFilters,
keyGroupedPartitioning,
ordering,
table,
commonPartitionValues,
applyPartialClustering,
replicatePartitions)
extends BatchScanExecShim(output, scan, runtimeFilters, table)
with BasicScanExecTransformer {

// Note: "metrics" is made transient to avoid sending driver-side metrics to tasks.
Expand Down Expand Up @@ -154,7 +146,7 @@ class BatchScanExecTransformer(
canonicalized.output,
canonicalized.scan,
canonicalized.runtimeFilters,
canonicalized.table
table = SparkShimLoader.getSparkShims.getBatchScanExecTable(canonicalized)
)
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -20,24 +20,22 @@ import io.glutenproject.GlutenConfig
import io.glutenproject.backendsapi.BackendsApiManager
import io.glutenproject.expression.ConverterUtils
import io.glutenproject.extension.ValidationResult
import io.glutenproject.metrics.{GlutenTimeMetric, MetricsUpdater}
import io.glutenproject.metrics.MetricsUpdater
import io.glutenproject.substrait.SubstraitContext
import io.glutenproject.substrait.rel.LocalFilesNode.ReadFileFormat
import io.glutenproject.substrait.rel.ReadRelNode

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.TableIdentifier
import org.apache.spark.sql.catalyst.expressions.{And, Attribute, AttributeReference, BoundReference, DynamicPruningExpression, Expression, PlanExpression, Predicate}
import org.apache.spark.sql.catalyst.expressions.{Attribute, Expression, PlanExpression}
import org.apache.spark.sql.connector.read.InputPartition
import org.apache.spark.sql.execution.{FileSourceScanExecShim, InSubqueryExec, ScalarSubquery, SparkPlan, SQLExecution}
import org.apache.spark.sql.execution.datasources.{HadoopFsRelation, PartitionDirectory}
import org.apache.spark.sql.execution.{FileSourceScanExecShim, SparkPlan}
import org.apache.spark.sql.execution.datasources.HadoopFsRelation
import org.apache.spark.sql.execution.metric.{SQLMetric, SQLMetrics}
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.vectorized.ColumnarBatch
import org.apache.spark.util.collection.BitSet

import java.util.concurrent.TimeUnit.NANOSECONDS

import scala.collection.JavaConverters

class FileSourceScanExecTransformer(
Expand Down Expand Up @@ -65,10 +63,10 @@ class FileSourceScanExecTransformer(
// Note: "metrics" is made transient to avoid sending driver-side metrics to tasks.
@transient override lazy val metrics: Map[String, SQLMetric] =
BackendsApiManager.getMetricsApiInstance
.genFileSourceScanTransformerMetrics(sparkContext) ++ staticMetrics
.genFileSourceScanTransformerMetrics(sparkContext) ++ staticMetricsAlias

/** SQL metrics generated only for scans using dynamic partition pruning. */
override protected lazy val staticMetrics =
private lazy val staticMetricsAlias =
if (partitionFilters.exists(FileSourceScanExecTransformer.isDynamicPruningFilter)) {
Map(
"staticFilesNum" -> SQLMetrics.createMetric(sparkContext, "static number of files read"),
Expand Down Expand Up @@ -160,91 +158,6 @@ class FileSourceScanExecTransformer(
override def metricsUpdater(): MetricsUpdater =
BackendsApiManager.getMetricsApiInstance.genFileSourceScanTransformerMetricsUpdater(metrics)

// The codes below are copied from FileSourceScanExec in Spark,
// all of them are private.

/**
* Send the driver-side metrics. Before calling this function, selectedPartitions has been
* initialized. See SPARK-26327 for more details.
*/
override protected def sendDriverMetrics(): Unit = {
val executionId = sparkContext.getLocalProperty(SQLExecution.EXECUTION_ID_KEY)
SQLMetrics.postDriverMetricUpdates(sparkContext, executionId, driverMetrics.values.toSeq)
}

protected def setFilesNumAndSizeMetric(
partitions: Seq[PartitionDirectory],
static: Boolean): Unit = {
val filesNum = partitions.map(_.files.size.toLong).sum
val filesSize = partitions.map(_.files.map(_.getLen).sum).sum
if (!static || !partitionFilters.exists(FileSourceScanExecTransformer.isDynamicPruningFilter)) {
driverMetrics("numFiles").set(filesNum)
driverMetrics("filesSize").set(filesSize)
} else {
driverMetrics("staticFilesNum").set(filesNum)
driverMetrics("staticFilesSize").set(filesSize)
}
if (relation.partitionSchema.nonEmpty) {
driverMetrics("numPartitions").set(partitions.length)
}
}

@transient override lazy val selectedPartitions: Array[PartitionDirectory] = {
val optimizerMetadataTimeNs = relation.location.metadataOpsTimeNs.getOrElse(0L)
GlutenTimeMetric.withNanoTime {
val ret =
relation.location.listFiles(
partitionFilters.filterNot(FileSourceScanExecTransformer.isDynamicPruningFilter),
dataFilters)
setFilesNumAndSizeMetric(ret, static = true)
ret
}(t => driverMetrics("metadataTime").set(NANOSECONDS.toMillis(t + optimizerMetadataTimeNs)))
}.toArray

// We can only determine the actual partitions at runtime when a dynamic partition filter is
// present. This is because such a filter relies on information that is only available at run
// time (for instance the keys used in the other side of a join).
@transient override lazy val dynamicallySelectedPartitions: Array[PartitionDirectory] = {
val dynamicPartitionFilters =
partitionFilters.filter(FileSourceScanExecTransformer.isDynamicPruningFilter)
val selected = if (dynamicPartitionFilters.nonEmpty) {
// When it includes some DynamicPruningExpression,
// it needs to execute InSubqueryExec first,
// because doTransform path can't execute 'doExecuteColumnar' which will
// execute prepare subquery first.
dynamicPartitionFilters.foreach {
case DynamicPruningExpression(inSubquery: InSubqueryExec) =>
executeInSubqueryForDynamicPruningExpression(inSubquery)
case e: Expression =>
e.foreach {
case s: ScalarSubquery => s.updateResult()
case _ =>
}
case _ =>
}
GlutenTimeMetric.withMillisTime {
// call the file index for the files matching all filters except dynamic partition filters
val predicate = dynamicPartitionFilters.reduce(And)
val partitionColumns = relation.partitionSchema
val boundPredicate = Predicate.create(
predicate.transform {
case a: AttributeReference =>
val index = partitionColumns.indexWhere(a.name == _.name)
BoundReference(index, partitionColumns(index).dataType, nullable = true)
},
Nil
)
val ret = selectedPartitions.filter(p => boundPredicate.eval(p.values))
setFilesNumAndSizeMetric(ret, static = false)
ret
}(t => driverMetrics("pruningTime").set(t))
} else {
selectedPartitions
}
sendDriverMetrics()
selected
}

override val nodeNamePrefix: String = "NativeFile"

override val nodeName: String = {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ import io.glutenproject.execution._
import io.glutenproject.expression.ExpressionConverter
import io.glutenproject.extension.columnar._
import io.glutenproject.metrics.GlutenTimeMetric
import io.glutenproject.sql.shims.SparkShimLoader
import io.glutenproject.utils.{ColumnarShuffleUtil, LogLevelUtil, PhysicalPlanSelector}

import org.apache.spark.api.python.EvalPythonExecTransformer
Expand Down Expand Up @@ -580,8 +581,12 @@ case class TransformPreOverrides(isAdaptiveContext: Boolean)
case _ =>
ExpressionConverter.transformDynamicPruningExpr(plan.runtimeFilters, reuseSubquery)
}
val transformer =
new BatchScanExecTransformer(plan.output, plan.scan, newPartitionFilters, plan.table)
val transformer = new BatchScanExecTransformer(
plan.output,
plan.scan,
newPartitionFilters,
table = SparkShimLoader.getSparkShims.getBatchScanExecTable(plan))

val validationResult = transformer.doValidate()
if (validationResult.isValid) {
logDebug(s"Columnar Processing for ${plan.getClass} is currently supported.")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ import io.glutenproject.GlutenConfig
import io.glutenproject.backendsapi.BackendsApiManager
import io.glutenproject.execution._
import io.glutenproject.extension.{GlutenPlan, ValidationResult}
import io.glutenproject.sql.shims.SparkShimLoader
import io.glutenproject.utils.PhysicalPlanSelector

import org.apache.spark.api.python.EvalPythonExecTransformer
Expand Down Expand Up @@ -333,12 +334,11 @@ case class AddTransformHintRule() extends Rule[SparkPlan] {
if (plan.runtimeFilters.nonEmpty) {
TransformHints.tagTransformable(plan)
} else {
val transformer =
new BatchScanExecTransformer(
plan.output,
plan.scan,
plan.runtimeFilters,
plan.table)
val transformer = new BatchScanExecTransformer(
plan.output,
plan.scan,
plan.runtimeFilters,
table = SparkShimLoader.getSparkShims.getBatchScanExecTable(plan))
TransformHints.tag(plan, transformer.doValidate().toTransformHint)
}
}
Expand Down
Loading

0 comments on commit af113bd

Please sign in to comment.