Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CH] Support flatten #6194

Merged
merged 3 commits into from
Jun 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -209,7 +209,6 @@ object CHExpressionUtil {
UNIX_MICROS -> DefaultValidator(),
TIMESTAMP_MILLIS -> DefaultValidator(),
TIMESTAMP_MICROS -> DefaultValidator(),
FLATTEN -> DefaultValidator(),
STACK -> DefaultValidator()
)
}
3 changes: 2 additions & 1 deletion cpp-ch/clickhouse.version
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
CH_ORG=Kyligence
CH_BRANCH=rebase_ch/20240621
CH_COMMIT=acf666c1c4f
CH_COMMIT=c811cbb985f

160 changes: 160 additions & 0 deletions cpp-ch/local-engine/Functions/SparkArrayFlatten.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <Functions/IFunction.h>
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionHelpers.h>
#include <DataTypes/DataTypeArray.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnNullable.h>


namespace DB
{

namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int ILLEGAL_COLUMN;
}

/// arrayFlatten([[1, 2, 3], [4, 5]]) = [1, 2, 3, 4, 5] - flatten array.
class SparkArrayFlatten : public IFunction
{
public:
static constexpr auto name = "sparkArrayFlatten";

static FunctionPtr create(ContextPtr) { return std::make_shared<SparkArrayFlatten>(); }

size_t getNumberOfArguments() const override { return 1; }
bool useDefaultImplementationForConstants() const override { return true; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }

DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
if (!isArray(arguments[0]))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}, expected Array",
arguments[0]->getName(), getName());

DataTypePtr nested_type = arguments[0];
nested_type = checkAndGetDataType<DataTypeArray>(removeNullable(nested_type).get())->getNestedType();
return nested_type;
}

ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
/** We create an array column with array elements as the most deep elements of nested arrays,
* and construct offsets by selecting elements of most deep offsets by values of ancestor offsets.
*
Example 1:

Source column: Array(Array(UInt8)):
Row 1: [[1, 2, 3], [4, 5]], Row 2: [[6], [7, 8]]
data: [1, 2, 3], [4, 5], [6], [7, 8]
offsets: 2, 4
data.data: 1 2 3 4 5 6 7 8
data.offsets: 3 5 6 8

Result column: Array(UInt8):
Row 1: [1, 2, 3, 4, 5], Row 2: [6, 7, 8]
data: 1 2 3 4 5 6 7 8
offsets: 5 8

Result offsets are selected from the most deep (data.offsets) by previous deep (offsets) (and values are decremented by one):
3 5 6 8
^ ^

Example 2:

Source column: Array(Array(Array(UInt8))):
Row 1: [[], [[1], [], [2, 3]]], Row 2: [[[4]]]

most deep data: 1 2 3 4

offsets1: 2 3
offsets2: 0 3 4
- ^ ^ - select by prev offsets
offsets3: 1 1 3 4
- ^ ^ - select by prev offsets

result offsets: 3, 4
result: Row 1: [1, 2, 3], Row2: [4]
*/

const ColumnArray * src_col = checkAndGetColumn<ColumnArray>(arguments[0].column.get());

if (!src_col)
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} in argument of function 'arrayFlatten'",
arguments[0].column->getName());

const IColumn::Offsets & src_offsets = src_col->getOffsets();

ColumnArray::ColumnOffsets::MutablePtr result_offsets_column;
const IColumn::Offsets * prev_offsets = &src_offsets;
const IColumn * prev_data = &src_col->getData();
bool nullable = prev_data->isNullable();
// when array has null element, return null
if (nullable)
{
const ColumnNullable * nullable_column = checkAndGetColumn<ColumnNullable>(prev_data);
prev_data = nullable_column->getNestedColumnPtr().get();
for (size_t i = 0; i < nullable_column->size(); i++)
{
if (nullable_column->isNullAt(i))
{
auto res= nullable_column->cloneEmpty();
res->insertManyDefaults(input_rows_count);
return res;
}
}
}
if (isNothing(prev_data->getDataType()))
return prev_data->cloneResized(input_rows_count);
// only flatten one dimension
if (const ColumnArray * next_col = checkAndGetColumn<ColumnArray>(prev_data))
{
result_offsets_column = ColumnArray::ColumnOffsets::create(input_rows_count);

IColumn::Offsets & result_offsets = result_offsets_column->getData();

const IColumn::Offsets * next_offsets = &next_col->getOffsets();

for (size_t i = 0; i < input_rows_count; ++i)
result_offsets[i] = (*next_offsets)[(*prev_offsets)[i] - 1]; /// -1 array subscript is Ok, see PaddedPODArray
prev_data = &next_col->getData();
}

auto res = ColumnArray::create(
prev_data->getPtr(),
result_offsets_column ? std::move(result_offsets_column) : src_col->getOffsetsPtr());
if (nullable)
return makeNullable(res);
return res;
}

private:
String getName() const override
{
return name;
}
};

REGISTER_FUNCTION(SparkArrayFlatten)
{
factory.registerFunction<SparkArrayFlatten>();
}

}
1 change: 1 addition & 0 deletions cpp-ch/local-engine/Parser/SerializedPlanParser.h
Original file line number Diff line number Diff line change
Expand Up @@ -180,6 +180,7 @@ static const std::map<std::string, std::string> SCALAR_FUNCTIONS
{"array", "array"},
{"shuffle", "arrayShuffle"},
{"range", "range"}, /// dummy mapping
{"flatten", "sparkArrayFlatten"},

// map functions
{"map", "map"},
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -172,6 +172,7 @@ class ClickHouseTestSettings extends BackendTestSettings {
.exclude("shuffle function - array for primitive type not containing null")
.exclude("shuffle function - array for primitive type containing null")
.exclude("shuffle function - array for non-primitive type")
.exclude("flatten function")
enableSuite[GlutenDataFrameHintSuite]
enableSuite[GlutenDataFrameImplicitsSuite]
enableSuite[GlutenDataFrameJoinSuite].exclude(
Expand Down Expand Up @@ -674,7 +675,6 @@ class ClickHouseTestSettings extends BackendTestSettings {
.exclude("Sequence with default step")
.exclude("Reverse")
.exclude("elementAt")
.exclude("Flatten")
.exclude("ArrayRepeat")
.exclude("Array remove")
.exclude("Array Distinct")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -49,4 +49,86 @@ class GlutenDataFrameFunctionsSuite extends DataFrameFunctionsSuite with GlutenS
false
)
}

testGluten("flatten function") {
// Test cases with a primitive type
val intDF = Seq(
(Seq(Seq(1, 2, 3), Seq(4, 5), Seq(6))),
(Seq(Seq(1, 2))),
(Seq(Seq(1), Seq.empty)),
(Seq(Seq.empty, Seq(1)))
).toDF("i")

val intDFResult = Seq(Row(Seq(1, 2, 3, 4, 5, 6)), Row(Seq(1, 2)), Row(Seq(1)), Row(Seq(1)))

def testInt(): Unit = {
checkAnswer(intDF.select(flatten($"i")), intDFResult)
checkAnswer(intDF.selectExpr("flatten(i)"), intDFResult)
}

// Test with local relation, the Project will be evaluated without codegen
testInt()
// Test with cached relation, the Project will be evaluated with codegen
intDF.cache()
testInt()

// Test cases with non-primitive types
val strDF = Seq(
(Seq(Seq("a", "b"), Seq("c"), Seq("d", "e", "f"))),
(Seq(Seq("a", "b"))),
(Seq(Seq("a", null), Seq(null, "b"), Seq(null, null))),
(Seq(Seq("a"), Seq.empty)),
(Seq(Seq.empty, Seq("a")))
).toDF("s")

val strDFResult = Seq(
Row(Seq("a", "b", "c", "d", "e", "f")),
Row(Seq("a", "b")),
Row(Seq("a", null, null, "b", null, null)),
Row(Seq("a")),
Row(Seq("a")))

def testString(): Unit = {
checkAnswer(strDF.select(flatten($"s")), strDFResult)
checkAnswer(strDF.selectExpr("flatten(s)"), strDFResult)
}

// Test with local relation, the Project will be evaluated without codegen
testString()
// Test with cached relation, the Project will be evaluated with codegen
strDF.cache()
testString()

val arrDF = Seq((1, "a", Seq(1, 2, 3))).toDF("i", "s", "arr")

def testArray(): Unit = {
checkAnswer(
arrDF.selectExpr("flatten(array(arr, array(null, 5), array(6, null)))"),
Seq(Row(Seq(1, 2, 3, null, 5, 6, null))))
checkAnswer(
arrDF.selectExpr("flatten(array(array(arr, arr), array(arr)))"),
Seq(Row(Seq(Seq(1, 2, 3), Seq(1, 2, 3), Seq(1, 2, 3)))))
}

// Test with local relation, the Project will be evaluated without codegen
testArray()
// Test with cached relation, the Project will be evaluated with codegen
arrDF.cache()
testArray()

// Error test cases
val oneRowDF = Seq((1, "a", Seq(1, 2, 3))).toDF("i", "s", "arr")
intercept[AnalysisException] {
oneRowDF.select(flatten($"arr"))
}
intercept[AnalysisException] {
oneRowDF.select(flatten($"i"))
}
intercept[AnalysisException] {
oneRowDF.select(flatten($"s"))
}
intercept[AnalysisException] {
oneRowDF.selectExpr("flatten(null)")
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -190,6 +190,7 @@ class ClickHouseTestSettings extends BackendTestSettings {
.exclude("shuffle function - array for primitive type not containing null")
.exclude("shuffle function - array for primitive type containing null")
.exclude("shuffle function - array for non-primitive type")
.exclude("flatten function")
enableSuite[GlutenDataFrameHintSuite]
enableSuite[GlutenDataFrameImplicitsSuite]
enableSuite[GlutenDataFrameJoinSuite].exclude(
Expand Down Expand Up @@ -714,7 +715,6 @@ class ClickHouseTestSettings extends BackendTestSettings {
.exclude("Sequence with default step")
.exclude("Reverse")
.exclude("elementAt")
.exclude("Flatten")
.exclude("ArrayRepeat")
.exclude("Array remove")
.exclude("Array Distinct")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -49,4 +49,86 @@ class GlutenDataFrameFunctionsSuite extends DataFrameFunctionsSuite with GlutenS
false
)
}

testGluten("flatten function") {
// Test cases with a primitive type
val intDF = Seq(
(Seq(Seq(1, 2, 3), Seq(4, 5), Seq(6))),
(Seq(Seq(1, 2))),
(Seq(Seq(1), Seq.empty)),
(Seq(Seq.empty, Seq(1)))
).toDF("i")

val intDFResult = Seq(Row(Seq(1, 2, 3, 4, 5, 6)), Row(Seq(1, 2)), Row(Seq(1)), Row(Seq(1)))

def testInt(): Unit = {
checkAnswer(intDF.select(flatten($"i")), intDFResult)
checkAnswer(intDF.selectExpr("flatten(i)"), intDFResult)
}

// Test with local relation, the Project will be evaluated without codegen
testInt()
// Test with cached relation, the Project will be evaluated with codegen
intDF.cache()
testInt()

// Test cases with non-primitive types
val strDF = Seq(
(Seq(Seq("a", "b"), Seq("c"), Seq("d", "e", "f"))),
(Seq(Seq("a", "b"))),
(Seq(Seq("a", null), Seq(null, "b"), Seq(null, null))),
(Seq(Seq("a"), Seq.empty)),
(Seq(Seq.empty, Seq("a")))
).toDF("s")

val strDFResult = Seq(
Row(Seq("a", "b", "c", "d", "e", "f")),
Row(Seq("a", "b")),
Row(Seq("a", null, null, "b", null, null)),
Row(Seq("a")),
Row(Seq("a")))

def testString(): Unit = {
checkAnswer(strDF.select(flatten($"s")), strDFResult)
checkAnswer(strDF.selectExpr("flatten(s)"), strDFResult)
}

// Test with local relation, the Project will be evaluated without codegen
testString()
// Test with cached relation, the Project will be evaluated with codegen
strDF.cache()
testString()

val arrDF = Seq((1, "a", Seq(1, 2, 3))).toDF("i", "s", "arr")

def testArray(): Unit = {
checkAnswer(
arrDF.selectExpr("flatten(array(arr, array(null, 5), array(6, null)))"),
Seq(Row(Seq(1, 2, 3, null, 5, 6, null))))
checkAnswer(
arrDF.selectExpr("flatten(array(array(arr, arr), array(arr)))"),
Seq(Row(Seq(Seq(1, 2, 3), Seq(1, 2, 3), Seq(1, 2, 3)))))
}

// Test with local relation, the Project will be evaluated without codegen
testArray()
// Test with cached relation, the Project will be evaluated with codegen
arrDF.cache()
testArray()

// Error test cases
val oneRowDF = Seq((1, "a", Seq(1, 2, 3))).toDF("i", "s", "arr")
intercept[AnalysisException] {
oneRowDF.select(flatten($"arr"))
}
intercept[AnalysisException] {
oneRowDF.select(flatten($"i"))
}
intercept[AnalysisException] {
oneRowDF.select(flatten($"s"))
}
intercept[AnalysisException] {
oneRowDF.selectExpr("flatten(null)")
}
}
}
Loading