Skip to content

Commit

Permalink
Classic LWR traffic flow (trixi-framework#1840)
Browse files Browse the repository at this point in the history
* Add classic LWR traffic flow model to Trixi

* fmt

* shorten

* Update examples/structured_1d_dgsem/elixir_traffic_flow_lwr_greenlight.jl

* Update examples/structured_1d_dgsem/elixir_traffic_flow_lwr_greenlight.jl

* rm IC const, fmt

* add davis wave speed estimate for upcoming change

* news and md

* Use euler

* fmt

* Update examples/structured_1d_dgsem/elixir_traffic_flow_lwr_greenlight.jl

* Update examples/tree_1d_dgsem/elixir_traffic_flow_lwr_trafficjam.jl

* Update NEWS.md

Co-authored-by: Andrew Winters <[email protected]>

* Andrew's suggestions

* Apply suggestions from code review

Co-authored-by: Hendrik Ranocha <[email protected]>

* add domain of u

* back to carpenter kennedy

* Update NEWS.md

Co-authored-by: Andrew Winters <[email protected]>

---------

Co-authored-by: Andrew Winters <[email protected]>
Co-authored-by: Hendrik Ranocha <[email protected]>
  • Loading branch information
3 people authored Feb 20, 2024
1 parent 29e173e commit 3c9374b
Show file tree
Hide file tree
Showing 11 changed files with 401 additions and 2 deletions.
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ for human readability.
- Different boundary conditions for quad/hex meshes in Abaqus format, even if not generated by HOHQMesh,
can now be digested by Trixi in 2D and 3D.
- Subcell (positivity) limiting support for nonlinear variables in 2D for `TreeMesh`
- Added Lighthill-Whitham-Richards (LWR) traffic model

## Changes when updating to v0.6 from v0.5.x

Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ installation and postprocessing procedures. Its features include:
* Hyperbolic diffusion equations for elliptic problems
* Lattice-Boltzmann equations (D2Q9 and D3Q27 schemes)
* Shallow water equations
* Several scalar conservation laws (e.g., linear advection, Burgers' equation)
* Several scalar conservation laws (e.g., linear advection, Burgers' equation, LWR traffic flow)
* Multi-physics simulations
* [Self-gravitating gas dynamics](https://github.com/trixi-framework/paper-self-gravitating-gas-dynamics)
* Shared-memory parallelization via multithreading
Expand Down
80 changes: 80 additions & 0 deletions examples/structured_1d_dgsem/elixir_traffic_flow_lwr_greenlight.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@

using OrdinaryDiffEq
using Trixi

###############################################################################

equations = TrafficFlowLWREquations1D()

solver = DGSEM(polydeg = 3, surface_flux = FluxHLL(min_max_speed_davis))

coordinates_min = (-1.0,) # minimum coordinate
coordinates_max = (1.0,) # maximum coordinate
cells_per_dimension = (64,)

mesh = StructuredMesh(cells_per_dimension, coordinates_min, coordinates_max,
periodicity = false)

# Example inspired from http://www.clawpack.org/riemann_book/html/Traffic_flow.html#Example:-green-light
# Green light that at x = 0 which switches at t = 0 from red to green.
# To the left there are cars bumper to bumper, to the right there are no cars.
function initial_condition_greenlight(x, t, equation::TrafficFlowLWREquations1D)
scalar = x[1] < 0.0 ? 1.0 : 0.0

return SVector(scalar)
end

###############################################################################
# Specify non-periodic boundary conditions

# Assume that there are always cars waiting at the left
function inflow(x, t, equations::TrafficFlowLWREquations1D)
return initial_condition_greenlight(coordinates_min, t, equations)
end
boundary_condition_inflow = BoundaryConditionDirichlet(inflow)

# Cars may leave the modeled domain
function boundary_condition_outflow(u_inner, orientation, normal_direction, x, t,
surface_flux_function,
equations::TrafficFlowLWREquations1D)
# Calculate the boundary flux entirely from the internal solution state
flux = Trixi.flux(u_inner, orientation, equations)

return flux
end

boundary_conditions = (x_neg = boundary_condition_inflow,
x_pos = boundary_condition_outflow)

initial_condition = initial_condition_greenlight

semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
boundary_conditions = boundary_conditions)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 0.5)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

stepsize_callback = StepsizeCallback(cfl = 1.2)

callbacks = CallbackSet(summary_callback,
analysis_callback, alive_callback,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 42, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);

summary_callback() # print the timer summary
54 changes: 54 additions & 0 deletions examples/tree_1d_dgsem/elixir_traffic_flow_lwr_convergence.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@

using OrdinaryDiffEq
using Trixi

###############################################################################

equations = TrafficFlowLWREquations1D()

# Use first order finite volume to prevent oscillations at the shock
solver = DGSEM(polydeg = 3, surface_flux = flux_hll)

coordinates_min = 0.0 # minimum coordinate
coordinates_max = 2.0 # maximum coordinate

# Create a uniformly refined mesh with periodic boundaries
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 4,
n_cells_max = 30_000)

###############################################################################
# Specify non-periodic boundary conditions

initial_condition = initial_condition_convergence_test
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 2.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

stepsize_callback = StepsizeCallback(cfl = 1.6)

callbacks = CallbackSet(summary_callback,
analysis_callback,
alive_callback,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(),
dt = 42, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);

summary_callback() # print the timer summary
82 changes: 82 additions & 0 deletions examples/tree_1d_dgsem/elixir_traffic_flow_lwr_trafficjam.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@

using OrdinaryDiffEq
using Trixi

###############################################################################

equations = TrafficFlowLWREquations1D()

# Use first order finite volume to prevent oscillations at the shock
solver = DGSEM(polydeg = 0, surface_flux = flux_lax_friedrichs)

coordinates_min = -1.0 # minimum coordinate
coordinates_max = 1.0 # maximum coordinate

mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 9,
n_cells_max = 30_000,
periodicity = false)

# Example taken from http://www.clawpack.org/riemann_book/html/Traffic_flow.html#Example:-Traffic-jam
# Discontinuous initial condition (Riemann Problem) leading to a shock that moves to the left.
# The shock corresponds to the traffic congestion.
function initial_condition_traffic_jam(x, t, equation::TrafficFlowLWREquations1D)
scalar = x[1] < 0.0 ? 0.5 : 1.0

return SVector(scalar)
end

###############################################################################
# Specify non-periodic boundary conditions

function outflow(x, t, equations::TrafficFlowLWREquations1D)
return initial_condition_traffic_jam(coordinates_min, t, equations)
end
boundary_condition_outflow = BoundaryConditionDirichlet(outflow)

function boundary_condition_inflow(u_inner, orientation, normal_direction, x, t,
surface_flux_function,
equations::TrafficFlowLWREquations1D)
# Calculate the boundary flux entirely from the internal solution state
flux = Trixi.flux(u_inner, orientation, equations)

return flux
end

boundary_conditions = (x_neg = boundary_condition_outflow,
x_pos = boundary_condition_inflow)

initial_condition = initial_condition_traffic_jam

semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
boundary_conditions = boundary_conditions)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 0.5)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

stepsize_callback = StepsizeCallback(cfl = 1.0)

callbacks = CallbackSet(summary_callback,
analysis_callback, alive_callback,
stepsize_callback)

###############################################################################
# run the simulation

# Note: Be careful when increasing the polynomial degree and switching from first order finite volume
# to some actual DG method - in that case, you should also exchange the ODE solver.
sol = solve(ode, Euler(),
dt = 42, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);

summary_callback() # print the timer summary
3 changes: 2 additions & 1 deletion src/Trixi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -157,7 +157,8 @@ export AcousticPerturbationEquations2D,
ShallowWaterTwoLayerEquations1D, ShallowWaterTwoLayerEquations2D,
ShallowWaterEquationsQuasi1D,
LinearizedEulerEquations2D,
PolytropicEulerEquations2D
PolytropicEulerEquations2D,
TrafficFlowLWREquations1D

export LaplaceDiffusion1D, LaplaceDiffusion2D, LaplaceDiffusion3D,
CompressibleNavierStokesDiffusion1D, CompressibleNavierStokesDiffusion2D,
Expand Down
5 changes: 5 additions & 0 deletions src/equations/equations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -507,4 +507,9 @@ include("linearized_euler_2d.jl")

abstract type AbstractEquationsParabolic{NDIMS, NVARS, GradientVariables} <:
AbstractEquations{NDIMS, NVARS} end

# Lighthill-Witham-Richards (LWR) traffic flow model
abstract type AbstractTrafficFlowLWREquations{NDIMS, NVARS} <:
AbstractEquations{NDIMS, NVARS} end
include("traffic_flow_lwr_1d.jl")
end # @muladd
116 changes: 116 additions & 0 deletions src/equations/traffic_flow_lwr_1d.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# By default, Julia/LLVM does not use fused multiply-add operations (FMAs).
# Since these FMAs can increase the performance of many numerical algorithms,
# we need to opt-in explicitly.
# See https://ranocha.de/blog/Optimizing_EC_Trixi for further details.
@muladd begin
#! format: noindent

@doc raw"""
TrafficFlowLWREquations1D
The classic Lighthill-Witham Richards (LWR) model for 1D traffic flow.
The car density is denoted by $u \in [0, 1]$ and
the maximum possible speed (e.g. due to speed limits) is $v_{\text{max}}$.
```math
\partial_t u + v_{\text{max}} \partial_1 [u (1 - u)] = 0
```
For more details see e.g. Section 11.1 of
- Randall LeVeque (2002)
Finite Volume Methods for Hyperbolic Problems
[DOI: 10.1017/CBO9780511791253]https://doi.org/10.1017/CBO9780511791253
"""
struct TrafficFlowLWREquations1D{RealT <: Real} <: AbstractTrafficFlowLWREquations{1, 1}
v_max::RealT

function TrafficFlowLWREquations1D(v_max = 1.0)
new{typeof(v_max)}(v_max)
end
end

varnames(::typeof(cons2cons), ::TrafficFlowLWREquations1D) = ("car-density",)
varnames(::typeof(cons2prim), ::TrafficFlowLWREquations1D) = ("car-density",)

"""
initial_condition_convergence_test(x, t, equations::TrafficFlowLWREquations1D)
A smooth initial condition used for convergence tests.
"""
function initial_condition_convergence_test(x, t, equations::TrafficFlowLWREquations1D)
c = 2.0
A = 1.0
L = 1
f = 1 / L
omega = 2 * pi * f
scalar = c + A * sin(omega * (x[1] - t))

return SVector(scalar)
end

"""
source_terms_convergence_test(u, x, t, equations::TrafficFlowLWREquations1D)
Source terms used for convergence tests in combination with
[`initial_condition_convergence_test`](@ref).
"""
@inline function source_terms_convergence_test(u, x, t,
equations::TrafficFlowLWREquations1D)
# Same settings as in `initial_condition`
c = 2.0
A = 1.0
L = 1
f = 1 / L
omega = 2 * pi * f
du = omega * cos(omega * (x[1] - t)) *
(-1 - equations.v_max * (2 * sin(omega * (x[1] - t)) + 3))

return SVector(du)
end

# Calculate 1D flux in for a single point
@inline function flux(u, orientation::Integer, equations::TrafficFlowLWREquations1D)
return SVector(equations.v_max * u[1] * (1.0 - u[1]))
end

# Calculate maximum wave speed for local Lax-Friedrichs-type dissipation
@inline function max_abs_speed_naive(u_ll, u_rr, orientation::Integer,
equations::TrafficFlowLWREquations1D)
λ_max = max(abs(equations.v_max * (1.0 - 2 * u_ll[1])),
abs(equations.v_max * (1.0 - 2 * u_rr[1])))
end

# Calculate minimum and maximum wave speeds for HLL-type fluxes
@inline function min_max_speed_naive(u_ll, u_rr, orientation::Integer,
equations::TrafficFlowLWREquations1D)
jac_L = equations.v_max * (1.0 - 2 * u_ll[1])
jac_R = equations.v_max * (1.0 - 2 * u_rr[1])

λ_min = min(jac_L, jac_R)
λ_max = max(jac_L, jac_R)

return λ_min, λ_max
end

@inline function min_max_speed_davis(u_ll, u_rr, orientation::Integer,
equations::TrafficFlowLWREquations1D)
min_max_speed_naive(u_ll, u_rr, orientation, equations)
end

@inline function max_abs_speeds(u, equations::TrafficFlowLWREquations1D)
return (abs(equations.v_max * (1.0 - 2 * u[1])),)
end

# Convert conservative variables to primitive
@inline cons2prim(u, equations::TrafficFlowLWREquations1D) = u

# Convert conservative variables to entropy variables
@inline cons2entropy(u, equations::TrafficFlowLWREquations1D) = u

# Calculate entropy for a conservative state `cons`
@inline entropy(u::Real, ::TrafficFlowLWREquations1D) = 0.5 * u^2
@inline entropy(u, equations::TrafficFlowLWREquations1D) = entropy(u[1], equations)

# Calculate total energy for a conservative state `cons`
@inline energy_total(u::Real, ::TrafficFlowLWREquations1D) = 0.5 * u^2
@inline energy_total(u, equations::TrafficFlowLWREquations1D) = energy_total(u[1],
equations)
end # @muladd
15 changes: 15 additions & 0 deletions test/test_structured_1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,21 @@ end
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000
end
end

@trixi_testset "elixir_traffic_flow_lwr_greenlight.jl" begin
@test_trixi_include(joinpath(EXAMPLES_DIR,
"elixir_traffic_flow_lwr_greenlight.jl"),
l2=[0.2005523261652845],
linf=[0.5052827913468407])
# Ensure that we do not have excessive memory allocations
# (e.g., from type instabilities)
let
t = sol.t[end]
u_ode = sol.u[end]
du_ode = similar(u_ode)
@test (@allocated Trixi.rhs!(du_ode, u_ode, semi, t)) < 1000
end
end
end

# Clean up afterwards: delete Trixi.jl output directory
Expand Down
Loading

0 comments on commit 3c9374b

Please sign in to comment.