A pure Java library which provides symmetric and asymmetric encryption compatible with DJB's NaCl library and its variants (e.g. libsodium). Also includes a class compatible with RbNaCl's SimpleBox construction, which automatically manages nonces for you in a misuse-resistant fashion.
<dependency>
<groupId>com.codahale</groupId>
<artifactId>xsalsa20poly1305</artifactId>
<version>0.11.0</version>
</dependency>
Note: module name for Java 9+ is com.codahale.xsalsa20poly1305
.
It depends on Bouncy Castle for Salsa20, XSalsa20, Poly1305, and X25519 implementations.
import java.nio.charset.StandardCharsets;
import com.codahale.xsalsa20poly1305.Keys;
import com.codahale.xsalsa20poly1305.SimpleBox;
class Examples {
void asymmetricEncryption() {
// Alice has a key pair
final byte[] alicePrivateKey = Keys.generatePrivateKey();
final byte[] alicePublicKey = Keys.generatePublicKey(alicePrivateKey);
// Bob also has a key pair
final byte[] bobPrivateKey = Keys.generatePrivateKey();
final byte[] bobPublicKey = Keys.generatePublicKey(bobPrivateKey);
// Bob and Alice exchange public keys. (Not pictured.)
// Bob wants to send Alice a very secret message.
final byte[] message = "this is very secret".getBytes(StandardCharsets.UTF_8);
// Bob encrypts the message using Alice's public key and his own private key
final SimpleBox bobBox = new SimpleBox(alicePublicKey, bobPrivateKey);
final byte[] ciphertext = bobBox.seal(message);
// Bob sends Alice this ciphertext. (Not pictured.)
// Alice decrypts the message using Bob's public key and her own private key.
final SimpleBox aliceBox = new SimpleBox(bobPublicKey, alicePrivateKey);
final byte[] plaintext = aliceBox.open(ciphertext);
// Now Alice has the message!
System.out.println(new String(plaintext, StandardCharsets.UTF_8));
}
void symmetricEncryption() {
// There is a single secret key.
final byte[] secretKey = Keys.generateSecretKey();
// And you want to use it to store a very secret message.
final byte[] message = "this is very secret".getBytes(StandardCharsets.UTF_8);
// So you encrypt it.
final SimpleBox box = new SimpleBox(secretKey);
final byte[] ciphertext = box.seal(message);
// And you store it. (Not pictured.)
// And then you decrypt it later.
final byte[] plaintext = box.open(ciphertext);
// Now you have the message again!
System.out.println(new String(plaintext, StandardCharsets.UTF_8));
}
// There is also SecretBox, which behaves much like SimpleBox but requires you to manage your own
// nonces. More on that later.
}
XSalsa20Poly1305 is composed of two cryptographic primitives: XSalsa20, a stream cipher, and Poly1305, a message authentication code. In order to be secure, both require a nonce -- a bit string which can only be used once for any given key. If a nonce is re-used -- i.e., used to encrypt two different messages -- this can have catastrophic consequences for the confidentiality and integrity of the encrypted messages: an attacker may be able to recover plaintext messages and even forge seemingly-valid messages. As a result, it is incredibly important that nonces be unique.
XSalsa20 uses 24-byte (192-bit) nonces, which makes the possibility of a secure random number
generator generating the same nonce twice essentially impossible, even over trillions of messages.
For normal operations, SecretBox#nonce()
(which simply returns 24 bytes from SecureRandom
)
should be safe to use. But because of the downside risk of nonce misuse, this library provides a
secondary function for generating misuse-resistant nonces: SecretBox#nonce()
, which requires the
message the nonce will be used to encrypt.
SecretBox#nonce(byte[])
uses the BLAKE2b hash algorithm, keyed with the given key and using
randomly-generated 128-bit salt and personalization parameters. If the local SecureRandom
implementation is functional, the hash algorithm mixes those 256 bits of entropy along with the key
and message to produce a 192-bit nonce, which will have the same chance of collision as
SecretBox#nonce()
. In the event that the local SecureRandom
implementation is misconfigured,
exhausted of entropy, or otherwise compromised, the generated nonce will be unique to the given
combination of key and message, thereby preserving the security of the messages. Please note that in
this event, using SecretBox#nonce()
to encrypt messages will be deterministic -- duplicate
messages will produce duplicate ciphertexts, and this will be observable to any attackers.
Because of the catastrophic downside risk of nonce reuse, the SimpleBox
functions use
SecretBox#nonce(byte[])
to generate nonces.
Plenty fast.
Benchmark (size) Mode Cnt Score Error Units
KaliumBenchmarks.decrypt 100 avgt 5 1514.807 ± 22.722 ns/op
KaliumBenchmarks.decrypt 1024 avgt 5 1522.446 ± 39.799 ns/op
KaliumBenchmarks.decrypt 10240 avgt 5 1523.473 ± 57.312 ns/op
KaliumBenchmarks.encrypt 100 avgt 5 1257.149 ± 37.157 ns/op
KaliumBenchmarks.encrypt 1024 avgt 5 1254.206 ± 37.659 ns/op
KaliumBenchmarks.encrypt 10240 avgt 5 1252.768 ± 19.789 ns/op
OurBenchmarks.open 100 avgt 5 1247.329 ± 29.835 ns/op
OurBenchmarks.open 1024 avgt 5 1198.329 ± 28.937 ns/op
OurBenchmarks.open 10240 avgt 5 1282.656 ± 118.296 ns/op
OurBenchmarks.seal 100 avgt 5 1120.629 ± 44.919 ns/op
OurBenchmarks.seal 1024 avgt 5 1239.287 ± 12.169 ns/op
OurBenchmarks.seal 10240 avgt 5 1112.890 ± 23.699 ns/op
OurBenchmarks.simpleOpen 100 avgt 5 1269.132 ± 10.512 ns/op
OurBenchmarks.simpleOpen 1024 avgt 5 1297.270 ± 15.052 ns/op
OurBenchmarks.simpleOpen 10240 avgt 5 1288.875 ± 21.530 ns/op
OurBenchmarks.simpleSeal 100 avgt 5 7165.066 ± 155.023 ns/op
OurBenchmarks.simpleSeal 1024 avgt 5 7062.841 ± 182.324 ns/op
OurBenchmarks.simpleSeal 10240 avgt 5 7545.090 ± 540.043 ns/op
Copyright © 2017 Coda Hale
Distributed under the Apache License 2.0.