-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #19 from bbodin/bruno-dev
Bruno dev
- Loading branch information
Showing
6 changed files
with
35,634 additions
and
119 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
# Throughput-Buffering Trade-Off Analysis | ||
K-Iter has several design space exploration (DSE) algorithms available to perform throughput-buffering trade-off analysis on SDFGs/CSDFGs. Here, we list the algorithms available, including the parameters that can be passed to them. The algorithms run on SDF3-like XML files as input files. | ||
|
||
## Optimal methods | ||
### K-periodic-driven DSE (KDSE) | ||
Perform throughput-buffering DSE using K-periodic scheduling for throughput computation and critical cycles as a search heuristic for buffer size allocations. By default, the ```ThroughputBufferingDSE``` algorithm runs the DSE algorithm using K-periodic scheduling and critical cycles, without logging: | ||
|
||
`./Release/bin/kiter -f <input-file> -a ThroughputBufferingDSE` | ||
|
||
In order to log the data (search path and Pareto points), specify a log directory using the ```LOGDIR``` parameter: | ||
|
||
`./Release/bin/kiter -f <input-file> -a ThroughputBufferingDSE -p LOGDIR=./logs/` | ||
|
||
### ASAP scheduling driven DSE (SDF3) | ||
[SDF3](https://www.es.ele.tue.nl/sdf3/) has a throughput-buffering DSE algorithm using ASAP scheduling for throughput computation and storage dependencies as a heuristic for determining buffer size allocations. SDF3 can be installed within K-Iter. We added logging capabilities to SDF3, amongst other changes, that will be listed in the following sections. Note that `patch` is required to run `install_sdf3.sh`, so install that with your package manager of choice before running the script. In order to install and compile SDF3, run the following from the home directory of K-Iter: | ||
|
||
1. If the subdirectory doesn't already exist: `mkdir ./tools/sdf3` | ||
2. `./tools/install_sdf3.sh ./tools/sdf3/` | ||
|
||
Now that SDF3 has been installed, their throughput-buffering DSE algorithm can be run using the following command: | ||
|
||
`SDF3LOGDIR=./logs/ USE_SCC=false COARSE=false ./tools/sdf3/sdf3_custom/sdf3/build/release/Linux/bin/{sdf3analysis-sdf|sdf3analysis-csdf} --graph <input-file> --algo buffersize` | ||
|
||
Note that `SDF3LOGDIR` sets the log directory path, so set it accordingly and make sure that the log directory is made before running the DSE. Furthermore, either `sdf3analysis-sdf` or `sdf3analysis-csdf` will have to be used depending on whether the input file is a SDF or CSDF graph. | ||
|
||
### Corrected storage dependency detection using strongly connected components | ||
We identified an implementation error in SDF3's simple cycle detection algorithm which, in turn, caused a bug in their storage dependency detection algorithm. We corrected this by using strongly connected components to detect cycles in their dependency graph. This corrected version can be run by setting ```USE_SCC=true```. | ||
|
||
`SDF3LOGDIR=./logs/ USE_SCC=true COARSE=false ./tools/sdf3/sdf3_custom/sdf3/build/release/Linux/bin/{sdf3analysis-sdf|sdf3analysis-csdf} --graph <input-file> --algo buffersize` | ||
|
||
## Approximate methods | ||
### 1-periodic DSE (1DSE) | ||
Perform throughput-buffering DSE using 1-periodic scheduling and dichotomous search for buffer size allocations: | ||
|
||
`./Release/bin/kiter -f <input-file> -a PeriodicDSE -p LOGDIR=./logs/` | ||
|
||
### Coarse K-periodic-driven DSE (KDSE-C) | ||
KDSE-C multiplies the step size of the KDSE algorithm by a 2 to increase the coarseness of the DSE: | ||
|
||
`./Release/bin/kiter -f <input-file> -a ThroughputBufferingDSE -p LOGDIR=./logs/ -p COARSE=2` | ||
|
||
### Coarse K-periodic-driven DSE (SDF3-C) | ||
SDF3-C multiplies the step size of the SDF3 algorithm by a 2 to increase the coarseness of the DSE: | ||
|
||
`SDF3LOGDIR=./logs/ USE_SCC=false COARSE=true ./tools/sdf3/sdf3_custom/sdf3/build/release/Linux/bin/{sdf3analysis-sdf|sdf3analysis-csdf} --graph <input-file> --algo buffersize` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
/* | ||
* cycle_detection.cpp | ||
* | ||
* Created on: 29 Dec 2021 | ||
* Author: toky | ||
*/ | ||
|
||
#include "cycle_detection.h" | ||
#include <commons/commons.h> | ||
#include <commons/verbose.h> | ||
#include <map> | ||
#include <vector> | ||
#include <algorithms/scc.h> | ||
#include <algorithms/throughput/symbolic_execution.h> | ||
#include <models/Dataflow.h> | ||
#include <limits> | ||
#include <stack> | ||
#include <set> | ||
|
||
std::vector<ARRAY_INDEX> dfs_stack; | ||
std::set<ARRAY_INDEX> blocked_set; | ||
std::map<ARRAY_INDEX, std::set<ARRAY_INDEX>> blocked_map; | ||
std::vector<std::vector<ARRAY_INDEX>> simple_cycles; | ||
|
||
bool algorithms::has_selfloops (models::Dataflow* const dataflow) { | ||
for (auto t : dataflow->vertices()) { | ||
if (dataflow->getReentrancyFactor(t) > 0) { | ||
return true; | ||
} | ||
} | ||
return false; | ||
} | ||
bool algorithms::has_cycles (models::Dataflow* const dataflow) { | ||
std::map<int, std::vector<ARRAY_INDEX>> res = algorithms::computeSCCKosaraju(dataflow); | ||
for (auto item : res) { | ||
VERBOSE_INFO("Component " << item.first << " has " << item.second.size() << " members"); | ||
} | ||
for (auto item : res) { | ||
if (item.second.size() > 1) return true; | ||
} | ||
return false; | ||
} | ||
void algorithms::cycle_detection (models::Dataflow* const dataflow, parameters_list_t){ | ||
VERBOSE_INFO("has_cycles result: " << algorithms::has_cycles(dataflow)); | ||
std::cout << "has_cycles result: " << algorithms::has_cycles(dataflow) << std::endl; | ||
} | ||
|
||
void algorithms::find_simple_cycles(models::Dataflow* const dataflow, parameters_list_t) { | ||
ARRAY_INDEX start_id = 1; // NOTE probably better to check first vertex in dataflow graph rather than assume value of start ID (dataflow->getFirstVertex()?) | ||
VERBOSE_DEBUG("original graph:" << std::endl); | ||
VERBOSE_DEBUG(print_status(dataflow) << std::endl); | ||
while (start_id <= dataflow->getVerticesCount()) { | ||
models::Dataflow* subgraph = generate_subgraph(dataflow, start_id); // subgraph excludes all vertices less than the specified starting ID | ||
std::map<int, std::vector<ARRAY_INDEX>> scc_map = algorithms::computeSCCKosaraju(subgraph); | ||
// find the SCC that contains the vertex with the smallest ID | ||
ARRAY_INDEX min_id = find_smallest_index(subgraph, scc_map); | ||
if (min_id != INT_MAX) { | ||
models::Dataflow* scc = generate_scc(subgraph, scc_map, min_id); | ||
VERBOSE_DEBUG("smallest vertex ID amongst SCCs: " << min_id << std::endl); | ||
VERBOSE_DEBUG(print_status(scc) << std::endl); | ||
blocked_set.clear(); | ||
blocked_map.clear(); | ||
find_simple_cycles_scc(scc, min_id, min_id); | ||
start_id = min_id + 1; | ||
} else { | ||
break; | ||
} | ||
} | ||
// print detected cycles | ||
std::cout << "Cycles detected:" << std::endl; | ||
for (auto cycle : simple_cycles) { | ||
int comp_count = 1; | ||
int cycle_size = cycle.size(); | ||
for (auto id : cycle) { | ||
if (comp_count < cycle_size) { | ||
std::cout << id << " -> "; | ||
} else { | ||
std::cout << id << std::endl; | ||
} | ||
comp_count++; | ||
} | ||
} | ||
std::cout << "Total number of cycles: " << simple_cycles.size() << std::endl; | ||
} | ||
|
||
// iterate through SCC map, ignore SCC of size == 1, track minimum ID value | ||
ARRAY_INDEX algorithms::find_smallest_index(models::Dataflow* const dataflow, | ||
std::map<int, std::vector<ARRAY_INDEX>> scc_map) { | ||
ARRAY_INDEX min_id = INT_MAX; // NOTE should be LDBL_MAX but i can't seem to get it to work | ||
for (auto const& component : scc_map) { | ||
if (component.second.size() > 1) { | ||
if (*std::min_element(component.second.begin(), component.second.end()) < min_id) { | ||
min_id = *std::min_element(component.second.begin(), component.second.end()); | ||
} | ||
} | ||
} | ||
|
||
return min_id; | ||
} | ||
|
||
// generate SCC that contains start_id | ||
models::Dataflow* algorithms::generate_scc(models::Dataflow* const dataflow, | ||
std::map<int, std::vector<ARRAY_INDEX>> scc_map, | ||
ARRAY_INDEX start_id) { | ||
models::Dataflow* scc = new models::Dataflow(*dataflow); | ||
for (auto const& component : scc_map) { | ||
if (std::find(component.second.begin(), | ||
component.second.end(), | ||
start_id) == component.second.end()) { | ||
continue; | ||
} else { | ||
{ForEachVertex(dataflow, v) { | ||
ARRAY_INDEX actor_id = dataflow->getVertexId(v); | ||
if (std::find(component.second.begin(), | ||
component.second.end(), | ||
actor_id) == component.second.end()) { | ||
scc->removeVertex(scc->getVertexById(actor_id)); | ||
} | ||
}} | ||
return scc; // return first SCC with start_id | ||
} | ||
} | ||
} | ||
// make subgraph excluding all vertices less than a specified ID | ||
models::Dataflow* algorithms::generate_subgraph(models::Dataflow* const dataflow, | ||
ARRAY_INDEX lower_limit) { | ||
models::Dataflow* subgraph = new models::Dataflow(*dataflow); | ||
subgraph->reset_computation(); | ||
// remove all actors with IDs less than specified lower_limit | ||
{ForEachVertex(dataflow, v) { | ||
ARRAY_INDEX actor_id = dataflow->getVertexId(v); | ||
if (actor_id < lower_limit) { | ||
subgraph->removeVertex(subgraph->getVertexById(actor_id)); | ||
} | ||
}} | ||
return subgraph; | ||
} | ||
|
||
// rescursively remove specified vertex ID from blocked_set while taking into account blocked_map | ||
void algorithms::unblock(ARRAY_INDEX id) { | ||
VERBOSE_DEBUG("removing " << id << " from blocked set" << std::endl); | ||
blocked_set.erase(blocked_set.find(id)); | ||
VERBOSE_DEBUG("\tblocked set: "); | ||
for (auto block : blocked_set) { | ||
VERBOSE_DEBUG(block << " "); | ||
} | ||
VERBOSE_DEBUG(std::endl); | ||
if (blocked_map.find(id) != blocked_map.end()) { | ||
for (auto actor_id : blocked_map[id]) { | ||
if (blocked_set.find(actor_id) != blocked_set.end()) { | ||
unblock(actor_id); | ||
} | ||
} | ||
VERBOSE_DEBUG("removing blocked mapping for all " << id << std::endl); | ||
blocked_map.erase(blocked_map.find(id)); | ||
} | ||
} | ||
|
||
// find simple cycles starting at start_vertex from current_vertex | ||
bool algorithms::find_simple_cycles_scc(models::Dataflow* const scc, | ||
ARRAY_INDEX start_id, ARRAY_INDEX current_id) { | ||
bool found_cycle = false; | ||
dfs_stack.push_back(current_id); | ||
blocked_set.insert(current_id); | ||
|
||
{ForOutputEdges(scc, scc->getVertexById(current_id), e) { | ||
ARRAY_INDEX neighbour_id = scc->getVertexId(scc->getEdgeTarget(e)); | ||
VERBOSE_DEBUG("current_id: " << current_id << std::endl); | ||
VERBOSE_DEBUG("neighbour_id: " << neighbour_id << std::endl); | ||
if (neighbour_id == start_id) { // cycle found | ||
VERBOSE_DEBUG("\tcurrent id == neighbour id; cycle found!" << std::endl); | ||
dfs_stack.push_back(start_id); | ||
std::vector<ARRAY_INDEX> cycle(dfs_stack); | ||
VERBOSE_DEBUG("\tFound cycle: "); | ||
for (auto i : cycle) { | ||
VERBOSE_DEBUG(i << " "); | ||
} | ||
VERBOSE_DEBUG(std::endl); | ||
simple_cycles.push_back(cycle); | ||
// std::cout << "Cycles detected so far: " << simple_cycles.size() << std::endl; | ||
dfs_stack.pop_back(); | ||
found_cycle = true; | ||
} else if (blocked_set.find(neighbour_id) == blocked_set.end()) { // neighbouring vertex not in blocked_set | ||
bool got_cycle = find_simple_cycles_scc(scc, start_id, neighbour_id); | ||
found_cycle = found_cycle || got_cycle; | ||
} | ||
}} | ||
if (found_cycle) { | ||
unblock(current_id); | ||
} else { | ||
{ForOutputEdges(scc, scc->getVertexById(current_id), e) { | ||
ARRAY_INDEX block_dep_id = scc->getVertexId(scc->getEdgeTarget(e)); | ||
VERBOSE_DEBUG("Adding " << block_dep_id << "->" << current_id << " to block map" << std::endl); | ||
blocked_map[block_dep_id].insert(current_id); | ||
}} | ||
} | ||
dfs_stack.pop_back(); | ||
return found_cycle; | ||
} | ||
|
||
// prints current status of dataflow graph | ||
std::string algorithms::print_status(models::Dataflow* const dataflow) { | ||
std::stringstream output_stream; | ||
|
||
output_stream << "\nActors:" << std::endl; | ||
{ForEachVertex(dataflow, v) { | ||
output_stream << dataflow->getVertexName(v) << std::endl; | ||
}} | ||
output_stream << "\nConnections:" << std::endl; | ||
{ForEachEdge(dataflow, e) { | ||
output_stream << "\tChannel " << dataflow->getEdgeName(e) << " (" | ||
<< dataflow->getVertexName(dataflow->getEdgeSource(e)) | ||
<< "->" | ||
<< dataflow->getVertexName(dataflow->getEdgeTarget(e)) | ||
<< "): " << std::endl; | ||
}} | ||
|
||
return output_stream.str(); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
/* | ||
* cycle_detection.h | ||
* | ||
* Created on: 29 Dec 2021 | ||
* Author: toky | ||
*/ | ||
|
||
#ifndef SRC_LIBKITER_ALGORITHMS_ANALYSIS_CYCLE_DETECTION_H_ | ||
#define SRC_LIBKITER_ALGORITHMS_ANALYSIS_CYCLE_DETECTION_H_ | ||
|
||
|
||
#include <commons/KiterRegistry.h> | ||
#include <algorithms/schedulings.h> | ||
|
||
namespace models { | ||
class Dataflow; | ||
} | ||
|
||
namespace algorithms { | ||
|
||
bool has_selfloops (models::Dataflow* const dataflow); | ||
bool has_cycles (models::Dataflow* const dataflow); | ||
void cycle_detection (models::Dataflow* const dataflow, parameters_list_t); | ||
void find_simple_cycles(models::Dataflow* const dataflow, parameters_list_t); | ||
ARRAY_INDEX find_smallest_index(models::Dataflow* const dataflow, | ||
std::map<int, std::vector<ARRAY_INDEX>> scc_map); | ||
models::Dataflow* generate_scc(models::Dataflow* const dataflow, | ||
std::map<int, std::vector<ARRAY_INDEX>> scc_map, | ||
ARRAY_INDEX start_id); | ||
models::Dataflow* generate_subgraph(models::Dataflow* const dataflow, | ||
ARRAY_INDEX lower_limit); | ||
void unblock(ARRAY_INDEX id); | ||
bool find_simple_cycles_scc(models::Dataflow* const scc, | ||
ARRAY_INDEX start_id, ARRAY_INDEX current_id); | ||
std::string print_status(models::Dataflow* const dataflow); | ||
|
||
|
||
} | ||
|
||
|
||
ADD_TRANSFORMATION(CycleDetection, | ||
transformation_t({ "CycleDetection" , "Returns 1 if there is a cycle in the graph and 0 if not..", algorithms::cycle_detection})); | ||
ADD_TRANSFORMATION(CycleCount, | ||
transformation_t({ "CycleCount" , "Count number of simple cycles in graph.", algorithms::find_simple_cycles})); | ||
|
||
|
||
|
||
#endif /* SRC_LIBKITER_ALGORITHMS_ANALYSIS_CYCLE_DETECTION_H_ */ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.