forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Avoid RowConverter for multi column grouping (10% faster clickbench q…
…ueries) (apache#12269) * row like group values to avoid rowconverter Signed-off-by: jayzhan211 <[email protected]> * comment out unused Signed-off-by: jayzhan211 <[email protected]> * implement to Arrow's builder Signed-off-by: jayzhan211 <[email protected]> * cleanup Signed-off-by: jayzhan211 <[email protected]> * switch back to vector Signed-off-by: jayzhan211 <[email protected]> * clippy Signed-off-by: jayzhan211 <[email protected]> * optimize for non-null Signed-off-by: jayzhan211 <[email protected]> * use truncate Signed-off-by: jayzhan211 <[email protected]> * cleanup Signed-off-by: jayzhan211 <[email protected]> * cleanup Signed-off-by: jayzhan211 <[email protected]> * fix first N bug Signed-off-by: jayzhan211 <[email protected]> * fix null check Signed-off-by: jayzhan211 <[email protected]> * fast path null Signed-off-by: jayzhan211 <[email protected]> * fix bug Signed-off-by: jayzhan211 <[email protected]> * fmt Signed-off-by: jayzhan211 <[email protected]> * fix error Signed-off-by: jayzhan211 <[email protected]> * clippy Signed-off-by: jayzhan211 <[email protected]> * adjust spill mode max mem Signed-off-by: jayzhan211 <[email protected]> * revert test_create_external_table_with_terminator_with_newlines_in_values Signed-off-by: jayzhan211 <[email protected]> * fix null handle bug Signed-off-by: jayzhan211 <[email protected]> * cleanup Signed-off-by: jayzhan211 <[email protected]> * support binary Signed-off-by: jayzhan211 <[email protected]> * add binary test Signed-off-by: jayzhan211 <[email protected]> * use Vec<T> instead of Option<Vec<T>> Signed-off-by: jayzhan211 <[email protected]> * add test and doc Signed-off-by: jayzhan211 <[email protected]> * debug assert Signed-off-by: jayzhan211 <[email protected]> * mv & rename Signed-off-by: jayzhan211 <[email protected]> * fix take_n logic Signed-off-by: jayzhan211 <[email protected]> * address comment Signed-off-by: jayzhan211 <[email protected]> * cleanup Signed-off-by: jayzhan211 <[email protected]> --------- Signed-off-by: jayzhan211 <[email protected]>
- Loading branch information
1 parent
6f6fb17
commit 99f475e
Showing
7 changed files
with
891 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
314 changes: 314 additions & 0 deletions
314
datafusion/physical-plan/src/aggregates/group_values/column_wise.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,314 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use crate::aggregates::group_values::group_value_row::{ | ||
ArrayRowEq, ByteGroupValueBuilder, PrimitiveGroupValueBuilder, | ||
}; | ||
use crate::aggregates::group_values::GroupValues; | ||
use ahash::RandomState; | ||
use arrow::compute::cast; | ||
use arrow::datatypes::{ | ||
Date32Type, Date64Type, Float32Type, Float64Type, Int16Type, Int32Type, Int64Type, | ||
Int8Type, UInt16Type, UInt32Type, UInt64Type, UInt8Type, | ||
}; | ||
use arrow::record_batch::RecordBatch; | ||
use arrow_array::{Array, ArrayRef}; | ||
use arrow_schema::{DataType, SchemaRef}; | ||
use datafusion_common::hash_utils::create_hashes; | ||
use datafusion_common::{DataFusionError, Result}; | ||
use datafusion_execution::memory_pool::proxy::{RawTableAllocExt, VecAllocExt}; | ||
use datafusion_expr::EmitTo; | ||
use datafusion_physical_expr::binary_map::OutputType; | ||
|
||
use hashbrown::raw::RawTable; | ||
|
||
/// Compare GroupValue Rows column by column | ||
pub struct GroupValuesColumn { | ||
/// The output schema | ||
schema: SchemaRef, | ||
|
||
/// Logically maps group values to a group_index in | ||
/// [`Self::group_values`] and in each accumulator | ||
/// | ||
/// Uses the raw API of hashbrown to avoid actually storing the | ||
/// keys (group values) in the table | ||
/// | ||
/// keys: u64 hashes of the GroupValue | ||
/// values: (hash, group_index) | ||
map: RawTable<(u64, usize)>, | ||
|
||
/// The size of `map` in bytes | ||
map_size: usize, | ||
|
||
/// The actual group by values, stored column-wise. Compare from | ||
/// the left to right, each column is stored as `ArrayRowEq`. | ||
/// This is shown faster than the row format | ||
group_values: Vec<Box<dyn ArrayRowEq>>, | ||
|
||
/// reused buffer to store hashes | ||
hashes_buffer: Vec<u64>, | ||
|
||
/// Random state for creating hashes | ||
random_state: RandomState, | ||
} | ||
|
||
impl GroupValuesColumn { | ||
pub fn try_new(schema: SchemaRef) -> Result<Self> { | ||
let map = RawTable::with_capacity(0); | ||
Ok(Self { | ||
schema, | ||
map, | ||
map_size: 0, | ||
group_values: vec![], | ||
hashes_buffer: Default::default(), | ||
random_state: Default::default(), | ||
}) | ||
} | ||
} | ||
|
||
impl GroupValues for GroupValuesColumn { | ||
fn intern(&mut self, cols: &[ArrayRef], groups: &mut Vec<usize>) -> Result<()> { | ||
let n_rows = cols[0].len(); | ||
|
||
if self.group_values.is_empty() { | ||
let mut v = Vec::with_capacity(cols.len()); | ||
|
||
for f in self.schema.fields().iter() { | ||
let nullable = f.is_nullable(); | ||
match f.data_type() { | ||
&DataType::Int8 => { | ||
let b = PrimitiveGroupValueBuilder::<Int8Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::Int16 => { | ||
let b = PrimitiveGroupValueBuilder::<Int16Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::Int32 => { | ||
let b = PrimitiveGroupValueBuilder::<Int32Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::Int64 => { | ||
let b = PrimitiveGroupValueBuilder::<Int64Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::UInt8 => { | ||
let b = PrimitiveGroupValueBuilder::<UInt8Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::UInt16 => { | ||
let b = PrimitiveGroupValueBuilder::<UInt16Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::UInt32 => { | ||
let b = PrimitiveGroupValueBuilder::<UInt32Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::UInt64 => { | ||
let b = PrimitiveGroupValueBuilder::<UInt64Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::Float32 => { | ||
let b = PrimitiveGroupValueBuilder::<Float32Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::Float64 => { | ||
let b = PrimitiveGroupValueBuilder::<Float64Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::Date32 => { | ||
let b = PrimitiveGroupValueBuilder::<Date32Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::Date64 => { | ||
let b = PrimitiveGroupValueBuilder::<Date64Type>::new(nullable); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::Utf8 => { | ||
let b = ByteGroupValueBuilder::<i32>::new(OutputType::Utf8); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::LargeUtf8 => { | ||
let b = ByteGroupValueBuilder::<i64>::new(OutputType::Utf8); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::Binary => { | ||
let b = ByteGroupValueBuilder::<i32>::new(OutputType::Binary); | ||
v.push(Box::new(b) as _) | ||
} | ||
&DataType::LargeBinary => { | ||
let b = ByteGroupValueBuilder::<i64>::new(OutputType::Binary); | ||
v.push(Box::new(b) as _) | ||
} | ||
dt => todo!("{dt} not impl"), | ||
} | ||
} | ||
self.group_values = v; | ||
} | ||
|
||
// tracks to which group each of the input rows belongs | ||
groups.clear(); | ||
|
||
// 1.1 Calculate the group keys for the group values | ||
let batch_hashes = &mut self.hashes_buffer; | ||
batch_hashes.clear(); | ||
batch_hashes.resize(n_rows, 0); | ||
create_hashes(cols, &self.random_state, batch_hashes)?; | ||
|
||
for (row, &target_hash) in batch_hashes.iter().enumerate() { | ||
let entry = self.map.get_mut(target_hash, |(exist_hash, group_idx)| { | ||
// Somewhat surprisingly, this closure can be called even if the | ||
// hash doesn't match, so check the hash first with an integer | ||
// comparison first avoid the more expensive comparison with | ||
// group value. https://github.com/apache/datafusion/pull/11718 | ||
if target_hash != *exist_hash { | ||
return false; | ||
} | ||
|
||
fn check_row_equal( | ||
array_row: &dyn ArrayRowEq, | ||
lhs_row: usize, | ||
array: &ArrayRef, | ||
rhs_row: usize, | ||
) -> bool { | ||
array_row.equal_to(lhs_row, array, rhs_row) | ||
} | ||
|
||
for (i, group_val) in self.group_values.iter().enumerate() { | ||
if !check_row_equal(group_val.as_ref(), *group_idx, &cols[i], row) { | ||
return false; | ||
} | ||
} | ||
|
||
true | ||
}); | ||
|
||
let group_idx = match entry { | ||
// Existing group_index for this group value | ||
Some((_hash, group_idx)) => *group_idx, | ||
// 1.2 Need to create new entry for the group | ||
None => { | ||
// Add new entry to aggr_state and save newly created index | ||
// let group_idx = group_values.num_rows(); | ||
// group_values.push(group_rows.row(row)); | ||
|
||
let mut checklen = 0; | ||
let group_idx = self.group_values[0].len(); | ||
for (i, group_value) in self.group_values.iter_mut().enumerate() { | ||
group_value.append_val(&cols[i], row); | ||
let len = group_value.len(); | ||
if i == 0 { | ||
checklen = len; | ||
} else { | ||
debug_assert_eq!(checklen, len); | ||
} | ||
} | ||
|
||
// for hasher function, use precomputed hash value | ||
self.map.insert_accounted( | ||
(target_hash, group_idx), | ||
|(hash, _group_index)| *hash, | ||
&mut self.map_size, | ||
); | ||
group_idx | ||
} | ||
}; | ||
groups.push(group_idx); | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn size(&self) -> usize { | ||
let group_values_size: usize = self.group_values.iter().map(|v| v.size()).sum(); | ||
group_values_size + self.map_size + self.hashes_buffer.allocated_size() | ||
} | ||
|
||
fn is_empty(&self) -> bool { | ||
self.len() == 0 | ||
} | ||
|
||
fn len(&self) -> usize { | ||
if self.group_values.is_empty() { | ||
return 0; | ||
} | ||
|
||
self.group_values[0].len() | ||
} | ||
|
||
fn emit(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> { | ||
let mut output = match emit_to { | ||
EmitTo::All => { | ||
let group_values = std::mem::take(&mut self.group_values); | ||
debug_assert!(self.group_values.is_empty()); | ||
|
||
group_values | ||
.into_iter() | ||
.map(|v| v.build()) | ||
.collect::<Vec<_>>() | ||
} | ||
EmitTo::First(n) => { | ||
let output = self | ||
.group_values | ||
.iter_mut() | ||
.map(|v| v.take_n(n)) | ||
.collect::<Vec<_>>(); | ||
|
||
// SAFETY: self.map outlives iterator and is not modified concurrently | ||
unsafe { | ||
for bucket in self.map.iter() { | ||
// Decrement group index by n | ||
match bucket.as_ref().1.checked_sub(n) { | ||
// Group index was >= n, shift value down | ||
Some(sub) => bucket.as_mut().1 = sub, | ||
// Group index was < n, so remove from table | ||
None => self.map.erase(bucket), | ||
} | ||
} | ||
} | ||
|
||
output | ||
} | ||
}; | ||
|
||
// TODO: Materialize dictionaries in group keys (#7647) | ||
for (field, array) in self.schema.fields.iter().zip(&mut output) { | ||
let expected = field.data_type(); | ||
if let DataType::Dictionary(_, v) = expected { | ||
let actual = array.data_type(); | ||
if v.as_ref() != actual { | ||
return Err(DataFusionError::Internal(format!( | ||
"Converted group rows expected dictionary of {v} got {actual}" | ||
))); | ||
} | ||
*array = cast(array.as_ref(), expected)?; | ||
} | ||
} | ||
|
||
Ok(output) | ||
} | ||
|
||
fn clear_shrink(&mut self, batch: &RecordBatch) { | ||
let count = batch.num_rows(); | ||
self.group_values.clear(); | ||
self.map.clear(); | ||
self.map.shrink_to(count, |_| 0); // hasher does not matter since the map is cleared | ||
self.map_size = self.map.capacity() * std::mem::size_of::<(u64, usize)>(); | ||
self.hashes_buffer.clear(); | ||
self.hashes_buffer.shrink_to(count); | ||
} | ||
} |
Oops, something went wrong.