-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #52 from bigscience-workshop/refactor
Refactor overall directory structure
- Loading branch information
Showing
11 changed files
with
241 additions
and
118 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
from dataclasses import dataclass, field | ||
from datetime import datetime | ||
from typing import Optional, List | ||
import os | ||
|
||
import torch | ||
from transformers import ( | ||
HfArgumentParser, | ||
AutoTokenizer, | ||
AutoModelForCausalLM, | ||
TrainingArguments, | ||
set_seed, | ||
) | ||
import evaluation.tasks # needed for AutoTask.__subclass__() to work correctly | ||
from evaluation.tasks.auto_task import AutoTask | ||
from evaluation.utils.log import get_logger | ||
|
||
|
||
@dataclass | ||
class EvaluationArguments: | ||
""" | ||
Arguments for any adjustable params in this evaluation script | ||
""" | ||
model_name_or_path: str = field( | ||
metadata={"help": "The model checkpoint that we want to evaluate, could be name or the path."} | ||
) | ||
eval_tasks: List[str] = field( | ||
metadata={"help": "A list of tasks to run the evaluation on, e.g. tydiqa_secondary"} | ||
) | ||
config_name: Optional[str] = field( | ||
default=None, | ||
metadata={"help": "Pretrained config name or path if not the same as model_name."} | ||
) | ||
tokenizer_name: Optional[str] = field( | ||
default=None, | ||
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name."} | ||
) | ||
tag: Optional[str] = field( | ||
default=None, | ||
metadata={"help": "Identifier for the evaluation run."} | ||
) | ||
|
||
|
||
def main(): | ||
parser = HfArgumentParser((EvaluationArguments, TrainingArguments)) | ||
eval_args, train_args = parser.parse_args_into_dataclasses() | ||
|
||
if not eval_args.eval_tasks: | ||
raise ValueError('Must provide at least one eval task!') | ||
|
||
# initialize device | ||
device = torch.device(train_args.device) | ||
|
||
logger = get_logger() | ||
logger.info(f"Beginning evaluation on device {train_args.device}") | ||
|
||
# Load model & tokenizer | ||
logger.info("Loading model...") | ||
tokenizer = AutoTokenizer.from_pretrained(eval_args.tokenizer_name or eval_args.model_name_or_path) | ||
tokenizer.pad_token = tokenizer.eos_token | ||
tokenizer.padding_side = "left" | ||
|
||
model = AutoModelForCausalLM.from_pretrained( | ||
eval_args.model_name_or_path, pad_token_id=tokenizer.eos_token, | ||
) | ||
model.config.pad_token_id = model.config.eos_token_id | ||
model.resize_token_embeddings(len(tokenizer)) | ||
model.to(device) | ||
|
||
# Exporting results | ||
tag = eval_args.tag or datetime.now().strftime("%y%m%d_%H%M%S") | ||
output_dir = os.path.join(train_args.output_dir, tag) | ||
os.makedirs(output_dir, exist_ok=True) | ||
|
||
for eval_task in eval_args.eval_tasks: | ||
logger.info(f"Benchmarking {eval_task}...") | ||
task = AutoTask.from_task_name(eval_task, tokenizer=tokenizer, model=model, device=device) | ||
set_seed(train_args.seed) | ||
task.evaluate() | ||
task.save_metrics(output_dir, logger) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
# recursively import every submodule at runtime | ||
# source: https://stackoverflow.com/questions/3365740/how-to-import-all-submodules | ||
import pkgutil | ||
|
||
__all__ = [] | ||
for loader, module_name, is_pkg in pkgutil.walk_packages(__path__): | ||
__all__.append(module_name) | ||
_module = loader.find_module(module_name).load_module(module_name) | ||
globals()[module_name] = _module |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
from abc import ABC, abstractmethod | ||
import os | ||
|
||
from evaluation.utils.io import save_json | ||
|
||
|
||
class AutoTask(ABC): | ||
def __init__(self, tokenizer, model, device): | ||
self.tokenizer = tokenizer | ||
self.model = model | ||
self.device = device | ||
self.metrics = {} | ||
|
||
@classmethod | ||
def from_task_name(cls, task_name: str, tokenizer, model, device): | ||
all_tasks = cls.__subclasses__() | ||
for task in all_tasks: | ||
if task.get_display_name() == task_name: | ||
return task(tokenizer=tokenizer, model=model, device=device) | ||
|
||
raise ValueError(f'Invalid task: {task_name}') | ||
|
||
@staticmethod | ||
@abstractmethod | ||
def get_display_name() -> str: | ||
pass | ||
|
||
@abstractmethod | ||
def evaluate(self) -> None: | ||
pass | ||
|
||
def save_metrics(self, output_dir, logger=None) -> str: | ||
output_filename = os.path.join(output_dir, f"{self.get_display_name()}.json") | ||
save_json(self.metrics, output_filename) | ||
|
||
if logger: | ||
logger.info(f"{self.get_display_name()}: result exported to {output_filename}") | ||
return output_filename |
File renamed without changes.
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
# Module for any additional processing required for the TyDi QA dataset | ||
# HuggingFace dataset link: https://huggingface.co/datasets/tydiqa | ||
from typing import Dict | ||
|
||
from jinja2 import Template | ||
from torch.utils.data import Dataset | ||
from datasets import load_dataset | ||
from tqdm import tqdm | ||
|
||
from evaluation.tasks.auto_task import AutoTask | ||
|
||
TEMPLATE = Template( | ||
""" | ||
{%- set _blank=["passage", "text", "text snippet", "context"]|random -%} | ||
{%- set _position = ["above", "following"] |random -%} | ||
{%- if _position == "above" -%} | ||
{{context}}{{"\n"}} | ||
{%- endif -%} | ||
Given the {{_position}} {{_blank}}, answer the question: {{question}} | ||
{%- if _position == "following" -%} | ||
{{"\n"}}{{context}} | ||
{%- endif -%} | ||
{{"\n"}}Answer: | ||
""" | ||
) | ||
|
||
|
||
class TyDiQADataset(Dataset): | ||
def __init__(self, tokenizer, target_langs): | ||
super().__init__() | ||
tydiqa = load_dataset("tydiqa", "secondary_task", split="validation") | ||
self.items = [] | ||
|
||
for sample in tydiqa: | ||
lang = sample["id"].split("-")[0] | ||
if lang in target_langs: | ||
# Filter out samples in languages that are not used during training | ||
prompt = TEMPLATE.render( | ||
id = sample["id"], | ||
context = sample["context"], | ||
question = sample["question"], | ||
) | ||
prompt = prompt.strip() # Remove trailing white space and newline | ||
|
||
# Tokenize and construct this sample | ||
inputs = tokenizer( | ||
prompt, | ||
padding=True, | ||
return_tensors='pt', | ||
) | ||
self.items.append( | ||
{ | ||
"prompt": prompt, | ||
"lang": lang, | ||
"input_ids": inputs["input_ids"], | ||
"attention_mask": inputs["attention_mask"], | ||
"input_len": inputs["attention_mask"].shape[1], | ||
"target_answer": [ans.lower() for ans in sample["answers"]['text']], | ||
} | ||
) | ||
|
||
def __len__(self): | ||
return len(self.items) | ||
|
||
def __getitem__(self, index): | ||
return self.items[index] | ||
|
||
|
||
class TydiqaSecondaryTask(AutoTask): | ||
@staticmethod | ||
def get_display_name() -> str: | ||
return 'tydiqa_secondary' | ||
|
||
def evaluate(self) -> None: | ||
dataset = TyDiQADataset(self.tokenizer, target_langs=["english"]) | ||
|
||
substring_matches = 0 | ||
for sample in tqdm(dataset, desc=f'Evaluating {self.get_display_name()}'): | ||
output = self.model.generate( | ||
input_ids=sample["input_ids"].to(self.device), | ||
attention_mask=sample["attention_mask"].to(self.device), | ||
max_length=min(sample["input_len"] * 2, self.model.config.n_positions), | ||
) | ||
|
||
prompt_len = len(sample["prompt"]) | ||
decoded_output = self.tokenizer.decode(output[0], skip_special_tokens=True) | ||
predicted_answer = decoded_output[prompt_len:] | ||
|
||
target_answers = sample["target_answer"] | ||
substring_match = any([target_answer in predicted_answer.lower() for target_answer in target_answers]) | ||
substring_matches += substring_match | ||
|
||
self.metrics = { | ||
"substring_matches": substring_matches / len(dataset) * 100 | ||
} |
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
import logging | ||
|
||
|
||
def get_logger(): | ||
logger = logging.getLogger("evaluation") | ||
formatter = logging.Formatter( | ||
'%(asctime)s - %(name)s - %(levelname)s - %(message)s', | ||
datefmt="%m/%d/%Y %H:%M:%S", | ||
) | ||
handler = logging.StreamHandler() | ||
handler.setFormatter(formatter) | ||
logger.addHandler(handler) | ||
logger.setLevel(logging.INFO) | ||
return logger |