This resipository contains our code submitted to Traffic4cast2020 competition (https://www.iarai.ac.at/traffic4cast/2020-competition/challenge/)
To generate our submitted test inference, run test_sedenion.py To retrain the model, run sedenion_trainer.py
This work is made available under the attached license
If using this code or work presented in the paper https://arxiv.org/abs/2012.03874 please cite
@article{bojesomo2020traffic,
title={Traffic flow prediction using Deep Sedenion Networks},
author={Alabi Bojesomo and Hasan Al-Marzouqi and Panos Liatsis },
year={2020},
eprint={2012.03874},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@article{bojesomo2024hypercomplex,
author={Bojesomo, Alabi and Liatsis, Panos and Marzouqi, Hasan Al},
journal={IEEE Signal Processing Magazine},
title={Deep Hypercomplex Networks for Spatiotemporal Data Processing: Parameter efficiency and superior performance [Hypercomplex Signal and Image Processing]},
year={2024},
volume={41},
number={3},
pages={101-112},
keywords={Training;Convolution;Algebra;Quaternions;Image processing;Data processing;Spatiotemporal phenomena},
doi={10.1109/MSP.2024.3381808}}