Skip to content

Commit

Permalink
Merge pull request #85 from boostcampaitech3/lyh/feat
Browse files Browse the repository at this point in the history
[refactoring] Add Violence filtering #80
  • Loading branch information
jeongjae96 authored Aug 24, 2022
2 parents 23478b2 + f41a57f commit 845f010
Show file tree
Hide file tree
Showing 50 changed files with 8,574 additions and 24 deletions.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
[ZoneTransfer]
ZoneId=3
HostUrl=https://www.pngegg.com/
19 changes: 19 additions & 0 deletions streamlit-fastapi-serving/fastapi/data/blood.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Example usage: python train.py --data trash.yaml
# parent
# ├── yolov5_custom
# └── custom_dataset
# └── images
# └── train
# └── labels

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../movie_dataset # dataset root dir
train: images/train # train images (relative to 'path')
val: images/val # val images (relative to 'path')
# test:

# Classes
nc: 5 # number of classes
names: ['blood', 'splink_blood', 'scar_blood', 'puddle_blood', 'background_blood'] # class names
607 changes: 607 additions & 0 deletions streamlit-fastapi-serving/fastapi/export.py

Large diffs are not rendered by default.

327 changes: 327 additions & 0 deletions streamlit-fastapi-serving/fastapi/inference/blood_detection.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,327 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run inference on images, videos, directories, streams, etc.
Usage - sources:
$ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python path/to/detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s.xml # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
"""

# import argparse
import easydict
import os
import sys
from pathlib import Path

import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
# ROOT = FILE.parents[0] # YOLOv5 root directory
# print("blood_detection ")
# for i, path in enumerate(FILE.parents):
# print(i, path)
# 0 /home/user/linux/hipipe/streamlit-fastapi-model-serving-master/fastapi/inference
# 1 /home/user/linux/hipipe/streamlit-fastapi-model-serving-master/fastapi
# 2 /home/user/linux/hipipe/streamlit-fastapi-model-serving-master
# 3 /home/user/linux/hipipe
# 4 /home/user/linux
# 5 /home/user
# 6 /home
# 7 /
# 1
ROOT = FILE.parents[1]
print(ROOT)
if str(ROOT) not in sys.path:
# sys.path.append(str(ROOT)) # add ROOT to PATH
sys.path.insert(0, str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative

print("ROOT ", ROOT)
print(sys.path)
print(os.getcwd())
from models.common import DetectMultiBackend
from yolo_utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from yolo_utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from yolo_utils.plots import Annotator, colors, save_one_box
from yolo_utils.torch_utils import select_device, time_sync


@torch.no_grad()
def run(
# weights=ROOT / 'yolov5s.pt', # model.pt path(s)
weights='', # model.pt path(s)
# source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
source='', # file/dir/URL/glob, 0 for webcam
data=ROOT / 'data/blood.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
if is_url and is_file:
source = check_file(source) # download

# Directories
# save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
save_dir = Path(project) / name # overwrite
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir

# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size

# Dataloader
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs

# Run inference
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
dt, seen = [0.0, 0.0, 0.0], 0
for path, im, im0s, vid_cap, s in dataset:
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1

# Inference
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2

# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3

# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string

# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(f'{txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')

if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
# annotator.box_label(xyxy, label, color=colors(c, True))
# annotator.mosaic_label(xyxy)
# annotator.blur(xyxy)
annotator.bubble(xyxy)
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

# Stream results
im0 = annotator.result()
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond

# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)

# Print time (inference-only)
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')

# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights) # update model (to fix SourceChangeWarning)


'''
import easydict
opt = easydict.EasyDict({
'modality': 'MIX2',
'rgb_list': 'list/rgb.list',
'flow_list': 'list/flow.list',
'audio_list': 'list/audio.list',
'test_rgb_list': 'data/list/video.list',
'test_flow_list': 'list/xx_flow_test.list',
'test_audio_list': 'data/list/audio.list',
'gt': 'list/gt.npy',
'gpus': 0,
'lr': 0.0001,
'batch_size': 128,
'workers': 4,
'model_name': 'wsanodet',
'pretrained_ckpt': None,
'feature_size': 1024+128,
'num_classes': 1,
'dataset_name': 'XD-Violence',
'max_seqlen': 200,
'max_epoch': 50,
})
parser = argparse.ArgumentParser(description='WeaklySupAnoDet')
# args = option.parser.parse_args()
args = option.opt
'''


def parse_opt():
image_path = 'data/blurred_images'
video_name = os.listdir(image_path)[0]
# parser = argparse.ArgumentParser()
# parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'last.pt', help='model path(s)')
# parser.add_argument('--source', type=str, default=os.path.join(image_path, video_name), help='file/dir/URL/glob, 0 for webcam')
# parser.add_argument('--data', type=str, default=ROOT / 'data/blood.yaml', help='(optional) dataset.yaml path')
# parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
# parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
# parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
# parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
# parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
# parser.add_argument('--view-img', action='store_true', help='show results')
# parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
# parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
# parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
# parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
# parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
# parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
# parser.add_argument('--augment', action='store_true', help='augmented inference')
# parser.add_argument('--visualize', action='store_true', help='visualize features')
# parser.add_argument('--update', action='store_true', help='update all models')
# parser.add_argument('--project', default=image_path, help='save results to project/name')
# parser.add_argument('--name', default=video_name, help='save results to project/name')
# parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
# parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
# parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
# parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
# parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
# parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
# opt = parser.parse_args()

opt = easydict.EasyDict({
'weights': ROOT / 'last.pt',
'source': os.path.join(image_path, video_name),
'data': ROOT / 'data/blood.yaml',
'imgsz': [640],
'conf_thres': 0.25,
'iou_thres': 0.45,
'max_det': 1000,
'device': '',
'project': image_path,
'name': video_name,
'line_thickness': 3,
'hide_labels': False,
'hide_conf': False,
})

opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt


def main():
opt = parse_opt()
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))


if __name__ == "__main__":
opt = parse_opt()
main()
Original file line number Diff line number Diff line change
Expand Up @@ -31,16 +31,15 @@
# sys.path.append("..")
tf.compat.v1.disable_v2_behavior()
# Import utilites
from ..models.ViolenceDetectionAndLocalization.local_utils import label_map_util
from models.ViolenceDetectionAndLocalization.local_utils import label_map_util
# from local_utils import visualization_utils as vis_util

# Name of the directory containing the object detection module we're using
MODEL_NAME = 'inference_graph'

# txtfile = open("hypotheses.txt", "w")
# Grab path to current working directory
# CWD_PATH = os.getcwd()
CWD_PATH = "../models/ViolenceDetectionAndLocalization"
CWD_PATH = "models/ViolenceDetectionAndLocalization"

# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
Expand Down Expand Up @@ -117,14 +116,11 @@ def cleanfilesandfolders(boxfolderspattern,videofilespattern):
num_detections = detection_graph.get_tensor_by_name('num_detections:0')

def kinetics_violence_localization(threshold):

off_path = '../data/npys/off.npy'
original_image_path = '../data/images'
image_path = '../data/blurred_images'
off_path = 'data/npys/off.npy'
original_image_path = 'data/images'
image_path = 'data/blurred_images'
video_name = os.listdir(image_path)[0]

off_score = np.load(off_path)

violent_scene = []

for i in range(len(off_score)):
Expand Down
Loading

0 comments on commit 845f010

Please sign in to comment.