-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #85 from boostcampaitech3/lyh/feat
[refactoring] Add Violence filtering #80
- Loading branch information
Showing
50 changed files
with
8,574 additions
and
24 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
3 changes: 3 additions & 0 deletions
3
streamlit-fastapi-serving/fastapi/data/alter_images/pngegg.png:Zone.Identifier
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
[ZoneTransfer] | ||
ZoneId=3 | ||
HostUrl=https://www.pngegg.com/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | ||
|
||
# Example usage: python train.py --data trash.yaml | ||
# parent | ||
# ├── yolov5_custom | ||
# └── custom_dataset | ||
# └── images | ||
# └── train | ||
# └── labels | ||
|
||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] | ||
path: ../movie_dataset # dataset root dir | ||
train: images/train # train images (relative to 'path') | ||
val: images/val # val images (relative to 'path') | ||
# test: | ||
|
||
# Classes | ||
nc: 5 # number of classes | ||
names: ['blood', 'splink_blood', 'scar_blood', 'puddle_blood', 'background_blood'] # class names |
Large diffs are not rendered by default.
Oops, something went wrong.
327 changes: 327 additions & 0 deletions
327
streamlit-fastapi-serving/fastapi/inference/blood_detection.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,327 @@ | ||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | ||
""" | ||
Run inference on images, videos, directories, streams, etc. | ||
Usage - sources: | ||
$ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam | ||
img.jpg # image | ||
vid.mp4 # video | ||
path/ # directory | ||
path/*.jpg # glob | ||
'https://youtu.be/Zgi9g1ksQHc' # YouTube | ||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream | ||
Usage - formats: | ||
$ python path/to/detect.py --weights yolov5s.pt # PyTorch | ||
yolov5s.torchscript # TorchScript | ||
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn | ||
yolov5s.xml # OpenVINO | ||
yolov5s.engine # TensorRT | ||
yolov5s.mlmodel # CoreML (macOS-only) | ||
yolov5s_saved_model # TensorFlow SavedModel | ||
yolov5s.pb # TensorFlow GraphDef | ||
yolov5s.tflite # TensorFlow Lite | ||
yolov5s_edgetpu.tflite # TensorFlow Edge TPU | ||
""" | ||
|
||
# import argparse | ||
import easydict | ||
import os | ||
import sys | ||
from pathlib import Path | ||
|
||
import torch | ||
import torch.backends.cudnn as cudnn | ||
|
||
FILE = Path(__file__).resolve() | ||
# ROOT = FILE.parents[0] # YOLOv5 root directory | ||
# print("blood_detection ") | ||
# for i, path in enumerate(FILE.parents): | ||
# print(i, path) | ||
# 0 /home/user/linux/hipipe/streamlit-fastapi-model-serving-master/fastapi/inference | ||
# 1 /home/user/linux/hipipe/streamlit-fastapi-model-serving-master/fastapi | ||
# 2 /home/user/linux/hipipe/streamlit-fastapi-model-serving-master | ||
# 3 /home/user/linux/hipipe | ||
# 4 /home/user/linux | ||
# 5 /home/user | ||
# 6 /home | ||
# 7 / | ||
# 1 | ||
ROOT = FILE.parents[1] | ||
print(ROOT) | ||
if str(ROOT) not in sys.path: | ||
# sys.path.append(str(ROOT)) # add ROOT to PATH | ||
sys.path.insert(0, str(ROOT)) # add ROOT to PATH | ||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | ||
|
||
print("ROOT ", ROOT) | ||
print(sys.path) | ||
print(os.getcwd()) | ||
from models.common import DetectMultiBackend | ||
from yolo_utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams | ||
from yolo_utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, | ||
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh) | ||
from yolo_utils.plots import Annotator, colors, save_one_box | ||
from yolo_utils.torch_utils import select_device, time_sync | ||
|
||
|
||
@torch.no_grad() | ||
def run( | ||
# weights=ROOT / 'yolov5s.pt', # model.pt path(s) | ||
weights='', # model.pt path(s) | ||
# source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam | ||
source='', # file/dir/URL/glob, 0 for webcam | ||
data=ROOT / 'data/blood.yaml', # dataset.yaml path | ||
imgsz=(640, 640), # inference size (height, width) | ||
conf_thres=0.25, # confidence threshold | ||
iou_thres=0.45, # NMS IOU threshold | ||
max_det=1000, # maximum detections per image | ||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu | ||
view_img=False, # show results | ||
save_txt=False, # save results to *.txt | ||
save_conf=False, # save confidences in --save-txt labels | ||
save_crop=False, # save cropped prediction boxes | ||
nosave=False, # do not save images/videos | ||
classes=None, # filter by class: --class 0, or --class 0 2 3 | ||
agnostic_nms=False, # class-agnostic NMS | ||
augment=False, # augmented inference | ||
visualize=False, # visualize features | ||
update=False, # update all models | ||
project=ROOT / 'runs/detect', # save results to project/name | ||
name='exp', # save results to project/name | ||
exist_ok=False, # existing project/name ok, do not increment | ||
line_thickness=3, # bounding box thickness (pixels) | ||
hide_labels=False, # hide labels | ||
hide_conf=False, # hide confidences | ||
half=False, # use FP16 half-precision inference | ||
dnn=False, # use OpenCV DNN for ONNX inference | ||
): | ||
source = str(source) | ||
save_img = not nosave and not source.endswith('.txt') # save inference images | ||
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) | ||
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) | ||
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file) | ||
if is_url and is_file: | ||
source = check_file(source) # download | ||
|
||
# Directories | ||
# save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run | ||
save_dir = Path(project) / name # overwrite | ||
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir | ||
|
||
# Load model | ||
device = select_device(device) | ||
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) | ||
stride, names, pt = model.stride, model.names, model.pt | ||
imgsz = check_img_size(imgsz, s=stride) # check image size | ||
|
||
# Dataloader | ||
if webcam: | ||
view_img = check_imshow() | ||
cudnn.benchmark = True # set True to speed up constant image size inference | ||
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) | ||
bs = len(dataset) # batch_size | ||
else: | ||
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) | ||
bs = 1 # batch_size | ||
vid_path, vid_writer = [None] * bs, [None] * bs | ||
|
||
# Run inference | ||
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup | ||
dt, seen = [0.0, 0.0, 0.0], 0 | ||
for path, im, im0s, vid_cap, s in dataset: | ||
t1 = time_sync() | ||
im = torch.from_numpy(im).to(device) | ||
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 | ||
im /= 255 # 0 - 255 to 0.0 - 1.0 | ||
if len(im.shape) == 3: | ||
im = im[None] # expand for batch dim | ||
t2 = time_sync() | ||
dt[0] += t2 - t1 | ||
|
||
# Inference | ||
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False | ||
pred = model(im, augment=augment, visualize=visualize) | ||
t3 = time_sync() | ||
dt[1] += t3 - t2 | ||
|
||
# NMS | ||
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) | ||
dt[2] += time_sync() - t3 | ||
|
||
# Second-stage classifier (optional) | ||
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) | ||
|
||
# Process predictions | ||
for i, det in enumerate(pred): # per image | ||
seen += 1 | ||
if webcam: # batch_size >= 1 | ||
p, im0, frame = path[i], im0s[i].copy(), dataset.count | ||
s += f'{i}: ' | ||
else: | ||
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) | ||
|
||
p = Path(p) # to Path | ||
save_path = str(save_dir / p.name) # im.jpg | ||
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt | ||
s += '%gx%g ' % im.shape[2:] # print string | ||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | ||
imc = im0.copy() if save_crop else im0 # for save_crop | ||
annotator = Annotator(im0, line_width=line_thickness, example=str(names)) | ||
if len(det): | ||
# Rescale boxes from img_size to im0 size | ||
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() | ||
|
||
# Print results | ||
for c in det[:, -1].unique(): | ||
n = (det[:, -1] == c).sum() # detections per class | ||
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | ||
|
||
# Write results | ||
for *xyxy, conf, cls in reversed(det): | ||
if save_txt: # Write to file | ||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | ||
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format | ||
with open(f'{txt_path}.txt', 'a') as f: | ||
f.write(('%g ' * len(line)).rstrip() % line + '\n') | ||
|
||
if save_img or save_crop or view_img: # Add bbox to image | ||
c = int(cls) # integer class | ||
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') | ||
# annotator.box_label(xyxy, label, color=colors(c, True)) | ||
# annotator.mosaic_label(xyxy) | ||
# annotator.blur(xyxy) | ||
annotator.bubble(xyxy) | ||
if save_crop: | ||
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) | ||
|
||
# Stream results | ||
im0 = annotator.result() | ||
if view_img: | ||
cv2.imshow(str(p), im0) | ||
cv2.waitKey(1) # 1 millisecond | ||
|
||
# Save results (image with detections) | ||
if save_img: | ||
if dataset.mode == 'image': | ||
cv2.imwrite(save_path, im0) | ||
else: # 'video' or 'stream' | ||
if vid_path[i] != save_path: # new video | ||
vid_path[i] = save_path | ||
if isinstance(vid_writer[i], cv2.VideoWriter): | ||
vid_writer[i].release() # release previous video writer | ||
if vid_cap: # video | ||
fps = vid_cap.get(cv2.CAP_PROP_FPS) | ||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | ||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | ||
else: # stream | ||
fps, w, h = 30, im0.shape[1], im0.shape[0] | ||
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos | ||
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) | ||
vid_writer[i].write(im0) | ||
|
||
# Print time (inference-only) | ||
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)') | ||
|
||
# Print results | ||
t = tuple(x / seen * 1E3 for x in dt) # speeds per image | ||
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) | ||
if save_txt or save_img: | ||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' | ||
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") | ||
if update: | ||
strip_optimizer(weights) # update model (to fix SourceChangeWarning) | ||
|
||
|
||
''' | ||
import easydict | ||
opt = easydict.EasyDict({ | ||
'modality': 'MIX2', | ||
'rgb_list': 'list/rgb.list', | ||
'flow_list': 'list/flow.list', | ||
'audio_list': 'list/audio.list', | ||
'test_rgb_list': 'data/list/video.list', | ||
'test_flow_list': 'list/xx_flow_test.list', | ||
'test_audio_list': 'data/list/audio.list', | ||
'gt': 'list/gt.npy', | ||
'gpus': 0, | ||
'lr': 0.0001, | ||
'batch_size': 128, | ||
'workers': 4, | ||
'model_name': 'wsanodet', | ||
'pretrained_ckpt': None, | ||
'feature_size': 1024+128, | ||
'num_classes': 1, | ||
'dataset_name': 'XD-Violence', | ||
'max_seqlen': 200, | ||
'max_epoch': 50, | ||
}) | ||
parser = argparse.ArgumentParser(description='WeaklySupAnoDet') | ||
# args = option.parser.parse_args() | ||
args = option.opt | ||
''' | ||
|
||
|
||
def parse_opt(): | ||
image_path = 'data/blurred_images' | ||
video_name = os.listdir(image_path)[0] | ||
# parser = argparse.ArgumentParser() | ||
# parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'last.pt', help='model path(s)') | ||
# parser.add_argument('--source', type=str, default=os.path.join(image_path, video_name), help='file/dir/URL/glob, 0 for webcam') | ||
# parser.add_argument('--data', type=str, default=ROOT / 'data/blood.yaml', help='(optional) dataset.yaml path') | ||
# parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') | ||
# parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') | ||
# parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') | ||
# parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') | ||
# parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | ||
# parser.add_argument('--view-img', action='store_true', help='show results') | ||
# parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | ||
# parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | ||
# parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') | ||
# parser.add_argument('--nosave', action='store_true', help='do not save images/videos') | ||
# parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') | ||
# parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') | ||
# parser.add_argument('--augment', action='store_true', help='augmented inference') | ||
# parser.add_argument('--visualize', action='store_true', help='visualize features') | ||
# parser.add_argument('--update', action='store_true', help='update all models') | ||
# parser.add_argument('--project', default=image_path, help='save results to project/name') | ||
# parser.add_argument('--name', default=video_name, help='save results to project/name') | ||
# parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | ||
# parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') | ||
# parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') | ||
# parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') | ||
# parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') | ||
# parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') | ||
# opt = parser.parse_args() | ||
|
||
opt = easydict.EasyDict({ | ||
'weights': ROOT / 'last.pt', | ||
'source': os.path.join(image_path, video_name), | ||
'data': ROOT / 'data/blood.yaml', | ||
'imgsz': [640], | ||
'conf_thres': 0.25, | ||
'iou_thres': 0.45, | ||
'max_det': 1000, | ||
'device': '', | ||
'project': image_path, | ||
'name': video_name, | ||
'line_thickness': 3, | ||
'hide_labels': False, | ||
'hide_conf': False, | ||
}) | ||
|
||
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand | ||
print_args(vars(opt)) | ||
return opt | ||
|
||
|
||
def main(): | ||
opt = parse_opt() | ||
check_requirements(exclude=('tensorboard', 'thop')) | ||
run(**vars(opt)) | ||
|
||
|
||
if __name__ == "__main__": | ||
opt = parse_opt() | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.