Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

brain-score.org submission (user:645) | (public:True) #1727

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions brainscore_vision/models/fabianResNet/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
from brainscore_vision import model_registry
from brainscore_vision.model_helpers.brain_transformation import ModelCommitment
from .model import get_model, get_layers

model_registry['fabianResNet'] = lambda: ModelCommitment(identifier='fabianResNet', activations_model=get_model('fabianResNet'), layers=get_layers('fabianResNet'))
70 changes: 70 additions & 0 deletions brainscore_vision/models/fabianResNet/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
from brainscore_vision.model_helpers.check_submission import check_models
import functools
from torchvision.models import resnet18
from torch import nn
from brainscore_vision.model_helpers.activations.pytorch import PytorchWrapper
from brainscore_vision.model_helpers.activations.pytorch import load_preprocess_images
import numpy as np
from brainscore_vision.model_helpers.brain_transformation import ModelCommitment


class FabianResNet(torch.nn.Module):
def __init__(self):
super(FabianResNet, self).__init__()
self.model = models.resnet18(weights=None)
self.model.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.model.maxpool = nn.Identity() # Remove maxpool
self.model.fc = nn.Sequential(
nn.Dropout(0.5), # Dropout to avoid overfitting
nn.Linear(self.model.fc.in_features, 200) # Tiny ImageNet has 200 classes
)

def forward(self, x):
activations = {}

x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
activations["conv1"] = x

x = self.model.layer1(x)
activations["layer1"] = x
x = self.model.layer2(x)
activations["layer2"] = x
x = self.model.layer3(x)
activations["layer3"] = x
x = self.model.layer4(x)
activations["layer4"] = x

x = self.model.avgpool(x)
x = torch.flatten(x, 1)
x = self.model.fc(x)
activations["fc"] = x

return activations

def get_model_list():
return ['fabianResNet']


def get_model(name):
assert name == 'fabianResNet'
preprocessing = functools.partial(load_preprocess_images, image_size=64)
activations_model = PytorchWrapper(identifier='fabianResNet', model=FabianResNet(), preprocessing=preprocessing)
model = ModelCommitment(identifier='fabianResNet', activations_model=activations_model,
layers=['conv1', 'layer1', 'layer2', 'layer3', 'layer4', 'fc'])
model.image_size = 64
return model


def get_layers(name):
assert name == 'fabianResNet'
return ['conv1', 'layer1', 'layer2', 'layer3', 'layer4', 'fc']


def get_bibtex(model_identifier):
return """FabianResNetModel"""


if __name__ == '__main__':
check_models.check_base_models(__name__)
7 changes: 7 additions & 0 deletions brainscore_vision/models/fabianResNet/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
torch
torchvision
Pillow
matplotlib
numpy
datasets
tensorboard
7 changes: 7 additions & 0 deletions brainscore_vision/models/fabianResNet/test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
import pytest
import brainscore_vision

@pytest.mark.travis_slow
def test_has_identifier():
model = brainscore_vision.load_model('fabianResNet')
assert model.identifier == 'fabianResNet'
Loading