Skip to content

Commit

Permalink
added deploy.prototxt
Browse files Browse the repository at this point in the history
  • Loading branch information
brodyh committed Apr 24, 2015
1 parent 49635bd commit 026a568
Showing 1 changed file with 359 additions and 0 deletions.
359 changes: 359 additions & 0 deletions models/drive_net/deploy.prototxt
Original file line number Diff line number Diff line change
@@ -0,0 +1,359 @@
name: "BrodyNet"
input: "data"
input_dim: 10
input_dim: 3
input_dim: 480
input_dim: 640

layers {
name: "L0"
type: CONVOLUTION
bottom: "data"
top: "L0"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layers {
name: "relu1"
type: RELU
bottom: "L0"
top: "L0"
}
layers {
name: "norm1"
type: LRN_FIXED
bottom: "L0"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layers {
name: "pool1"
type: POOLING
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "L1"
type: CONVOLUTION
bottom: "pool1"
top: "L1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layers {
name: "relu2"
type: RELU
bottom: "L1"
top: "L1"
}
layers {
name: "norm2"
type: LRN_FIXED
bottom: "L1"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layers {
name: "pool2"
type: POOLING
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "L2"
type: CONVOLUTION
bottom: "pool2"
top: "L2"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layers {
name: "relu3"
type: RELU
bottom: "L2"
top: "L2"
}
layers {
name: "L3"
type: CONVOLUTION
bottom: "L2"
top: "L3"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layers {
name: "relu4"
type: RELU
bottom: "L3"
top: "L3"
}
layers {
name: "L4"
type: CONVOLUTION
bottom: "L3"
top: "L4"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layers {
name: "relu5"
type: RELU
bottom: "L4"
top: "L4"
}
layers {
name: "pool5"
type: POOLING
bottom: "L4"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "L5"
type: CONVOLUTION
bottom: "pool5"
top: "L5"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 4096
kernel_size: 6
pad: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layers {
name: "relu6"
type: RELU
bottom: "L5"
top: "L5"
}
layers {
name: "drop6"
type: DROPOUT_FIXED
bottom: "L5"
top: "L5d"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "L6"
type: CONVOLUTION
bottom: "L5d"
top: "L6"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 4096
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layers {
name: "relu7"
type: RELU
bottom: "L6"
top: "L6"
}
layers {
name: "drop7"
type: DROPOUT_FIXED
bottom: "L6"
top: "L6d"
dropout_param {
dropout_ratio: 0.5
}
}

layers {
name: "bb-output"
type: CONVOLUTION
bottom: "L6d"
top: "bb-output"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 256
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1.0
}
}
}

layers {
name: "pixel-conv"
type: CONVOLUTION
bottom: "L6d"
top: "pixel-conv"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 128
kernel_size: 1
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1.0
}
}
}

layers {
name: "pixel-tile"
type: TILING
bottom: "pixel-conv"
top: "pixel-conv-tiled"
tiling_param {
tile_dim: 8
}
}

layers {
name: "bb-tile"
type: TILING
bottom: "bb-output"
top: "bb-output-tiled"
tiling_param {
tile_dim: 8
}
}

# Pixel level softmax prediction.
layers {
name: "pixel-prob"
type: SOFTMAX
bottom: "pixel-conv-tiled"
top: "pixel-prob"
}

0 comments on commit 026a568

Please sign in to comment.