forked from BVLC/caffe
-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
359 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,359 @@ | ||
name: "BrodyNet" | ||
input: "data" | ||
input_dim: 10 | ||
input_dim: 3 | ||
input_dim: 480 | ||
input_dim: 640 | ||
|
||
layers { | ||
name: "L0" | ||
type: CONVOLUTION | ||
bottom: "data" | ||
top: "L0" | ||
blobs_lr: 1 | ||
blobs_lr: 2 | ||
weight_decay: 1 | ||
weight_decay: 0 | ||
convolution_param { | ||
num_output: 96 | ||
kernel_size: 11 | ||
stride: 4 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0.1 | ||
} | ||
} | ||
} | ||
layers { | ||
name: "relu1" | ||
type: RELU | ||
bottom: "L0" | ||
top: "L0" | ||
} | ||
layers { | ||
name: "norm1" | ||
type: LRN_FIXED | ||
bottom: "L0" | ||
top: "norm1" | ||
lrn_param { | ||
local_size: 5 | ||
alpha: 0.0001 | ||
beta: 0.75 | ||
} | ||
} | ||
layers { | ||
name: "pool1" | ||
type: POOLING | ||
bottom: "norm1" | ||
top: "pool1" | ||
pooling_param { | ||
pool: MAX | ||
kernel_size: 3 | ||
stride: 2 | ||
} | ||
} | ||
layers { | ||
name: "L1" | ||
type: CONVOLUTION | ||
bottom: "pool1" | ||
top: "L1" | ||
blobs_lr: 1 | ||
blobs_lr: 2 | ||
weight_decay: 1 | ||
weight_decay: 0 | ||
convolution_param { | ||
num_output: 256 | ||
pad: 2 | ||
kernel_size: 5 | ||
group: 1 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0.1 | ||
} | ||
} | ||
} | ||
layers { | ||
name: "relu2" | ||
type: RELU | ||
bottom: "L1" | ||
top: "L1" | ||
} | ||
layers { | ||
name: "norm2" | ||
type: LRN_FIXED | ||
bottom: "L1" | ||
top: "norm2" | ||
lrn_param { | ||
local_size: 5 | ||
alpha: 0.0001 | ||
beta: 0.75 | ||
} | ||
} | ||
layers { | ||
name: "pool2" | ||
type: POOLING | ||
bottom: "norm2" | ||
top: "pool2" | ||
pooling_param { | ||
pool: MAX | ||
kernel_size: 3 | ||
stride: 2 | ||
} | ||
} | ||
layers { | ||
name: "L2" | ||
type: CONVOLUTION | ||
bottom: "pool2" | ||
top: "L2" | ||
blobs_lr: 1 | ||
blobs_lr: 2 | ||
weight_decay: 1 | ||
weight_decay: 0 | ||
convolution_param { | ||
num_output: 384 | ||
pad: 1 | ||
kernel_size: 3 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0.1 | ||
} | ||
} | ||
} | ||
layers { | ||
name: "relu3" | ||
type: RELU | ||
bottom: "L2" | ||
top: "L2" | ||
} | ||
layers { | ||
name: "L3" | ||
type: CONVOLUTION | ||
bottom: "L2" | ||
top: "L3" | ||
blobs_lr: 1 | ||
blobs_lr: 2 | ||
weight_decay: 1 | ||
weight_decay: 0 | ||
convolution_param { | ||
num_output: 384 | ||
pad: 1 | ||
kernel_size: 3 | ||
group: 1 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0.1 | ||
} | ||
} | ||
} | ||
layers { | ||
name: "relu4" | ||
type: RELU | ||
bottom: "L3" | ||
top: "L3" | ||
} | ||
layers { | ||
name: "L4" | ||
type: CONVOLUTION | ||
bottom: "L3" | ||
top: "L4" | ||
blobs_lr: 1 | ||
blobs_lr: 2 | ||
weight_decay: 1 | ||
weight_decay: 0 | ||
convolution_param { | ||
num_output: 384 | ||
pad: 1 | ||
kernel_size: 3 | ||
group: 1 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 0.1 | ||
} | ||
} | ||
} | ||
layers { | ||
name: "relu5" | ||
type: RELU | ||
bottom: "L4" | ||
top: "L4" | ||
} | ||
layers { | ||
name: "pool5" | ||
type: POOLING | ||
bottom: "L4" | ||
top: "pool5" | ||
pooling_param { | ||
pool: MAX | ||
kernel_size: 3 | ||
stride: 2 | ||
} | ||
} | ||
layers { | ||
name: "L5" | ||
type: CONVOLUTION | ||
bottom: "pool5" | ||
top: "L5" | ||
blobs_lr: 1 | ||
blobs_lr: 2 | ||
weight_decay: 1 | ||
weight_decay: 0 | ||
convolution_param { | ||
num_output: 4096 | ||
kernel_size: 6 | ||
pad: 3 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 1 | ||
} | ||
} | ||
} | ||
layers { | ||
name: "relu6" | ||
type: RELU | ||
bottom: "L5" | ||
top: "L5" | ||
} | ||
layers { | ||
name: "drop6" | ||
type: DROPOUT_FIXED | ||
bottom: "L5" | ||
top: "L5d" | ||
dropout_param { | ||
dropout_ratio: 0.5 | ||
} | ||
} | ||
layers { | ||
name: "L6" | ||
type: CONVOLUTION | ||
bottom: "L5d" | ||
top: "L6" | ||
blobs_lr: 1 | ||
blobs_lr: 2 | ||
weight_decay: 1 | ||
weight_decay: 0 | ||
convolution_param { | ||
num_output: 4096 | ||
kernel_size: 1 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 1 | ||
} | ||
} | ||
} | ||
layers { | ||
name: "relu7" | ||
type: RELU | ||
bottom: "L6" | ||
top: "L6" | ||
} | ||
layers { | ||
name: "drop7" | ||
type: DROPOUT_FIXED | ||
bottom: "L6" | ||
top: "L6d" | ||
dropout_param { | ||
dropout_ratio: 0.5 | ||
} | ||
} | ||
|
||
layers { | ||
name: "bb-output" | ||
type: CONVOLUTION | ||
bottom: "L6d" | ||
top: "bb-output" | ||
blobs_lr: 1 | ||
blobs_lr: 2 | ||
weight_decay: 1 | ||
weight_decay: 0 | ||
convolution_param { | ||
num_output: 256 | ||
kernel_size: 1 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.01 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 1.0 | ||
} | ||
} | ||
} | ||
|
||
layers { | ||
name: "pixel-conv" | ||
type: CONVOLUTION | ||
bottom: "L6d" | ||
top: "pixel-conv" | ||
blobs_lr: 1 | ||
blobs_lr: 2 | ||
weight_decay: 1 | ||
weight_decay: 0 | ||
convolution_param { | ||
num_output: 128 | ||
kernel_size: 1 | ||
weight_filler { | ||
type: "gaussian" | ||
std: 0.005 | ||
} | ||
bias_filler { | ||
type: "constant" | ||
value: 1.0 | ||
} | ||
} | ||
} | ||
|
||
layers { | ||
name: "pixel-tile" | ||
type: TILING | ||
bottom: "pixel-conv" | ||
top: "pixel-conv-tiled" | ||
tiling_param { | ||
tile_dim: 8 | ||
} | ||
} | ||
|
||
layers { | ||
name: "bb-tile" | ||
type: TILING | ||
bottom: "bb-output" | ||
top: "bb-output-tiled" | ||
tiling_param { | ||
tile_dim: 8 | ||
} | ||
} | ||
|
||
# Pixel level softmax prediction. | ||
layers { | ||
name: "pixel-prob" | ||
type: SOFTMAX | ||
bottom: "pixel-conv-tiled" | ||
top: "pixel-prob" | ||
} |