forked from BVLC/caffe
-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
William Song Song
committed
Dec 1, 2014
1 parent
d771232
commit 97687c1
Showing
8 changed files
with
950 additions
and
12 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
""" | ||
Conver mean binary proto to npy so that it can be used for visualizing | ||
network activity. | ||
""" | ||
import os | ||
import numpy as np | ||
from google.protobuf import text_format | ||
|
||
import caffe | ||
from caffe.proto import caffe_pb2 | ||
from PIL import Image | ||
|
||
def main(argv): | ||
if len(argv) != 2: | ||
print 'Usage: %s mean_binary' % os.path.basename(sys.argv[0]) | ||
return | ||
|
||
mean_data = caffe_pb2.BlobProto() | ||
mean_data.ParseFromString(open(sys.argv[1]).read()) | ||
|
||
mean_data = np.array(mean_data.data) | ||
mean_img = mean_data.reshape([3, 480, 640]) | ||
mean_img = mean_img[(2, 1, 0), :, :] | ||
np.save(open('mean_r.npy', 'wb'), mean_img) | ||
|
||
mean_img = np.transpose(mean_img, (1, 2, 0)) | ||
Image.fromarray(mean_img.astype('uint8')).save('mean.png') | ||
|
||
real_img = caffe.io.load_image( \ | ||
'/deep/group/driving_data/andriluka/IMAGES/driving_data_q50_data/all_extracted/4-2-14-monterey-split_0_280S_a2/4-2-14-monterey-split_0_280S_a2_000341.jpeg') | ||
real_img = caffe.io.resize_image(real_img * 255, (480, 640, 3)) | ||
Image.fromarray(real_img.astype('uint8')).save('original.png') | ||
Image.fromarray(np.clip(real_img - mean_img, 0, 255).astype('uint8')).save('sub.png') | ||
|
||
if __name__ == '__main__': | ||
import sys | ||
main(sys.argv) |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
import numpy as np | ||
import scipy | ||
import cv2 | ||
|
||
class Rect(): | ||
def __init__(self, xmin, ymin, xmax, ymax): | ||
if xmax < xmin: | ||
xmax = xmin | ||
if ymax < ymin: | ||
ymax = ymin | ||
self.xmin = int(xmin) | ||
self.ymin = int(ymin) | ||
self.xmax = int(xmax) | ||
self.ymax = int(ymax) | ||
self.w = self.xmax - self.xmin | ||
self.h = self.ymax - self.ymin | ||
|
||
def area(self): | ||
return (self.xmax - self.xmin + 1) * (self.ymax - self.ymin + 1) | ||
|
||
def jaccard(self, other): | ||
xmin = max(self.xmin, other.xmin) | ||
xmax = min(self.xmax, other.xmax) | ||
ymin = max(self.ymin, other.ymin) | ||
ymax = min(self.ymax, other.ymax) | ||
if ymax >= ymin and xmax >= xmin: | ||
intersect = (xmax - xmin + 1) * (ymax - ymin + 1) | ||
else: | ||
return 0 | ||
return float(intersect) / (self.area() + other.area() - intersect) | ||
|
||
def __repr__(self): | ||
return '(%d,%d,%d,%d)' % (self.xmin, self.ymin, self.xmax, self.ymax) | ||
|
||
def __str__(self): | ||
return '(%d,%d,%d,%d)' % (self.xmin, self.ymin, self.xmax, self.ymax) | ||
|
||
def get_gt_bbs(bbs): | ||
assert len(bbs) % 4 == 0 | ||
rbbs = [] | ||
for i in range(0, len(bbs), 4): | ||
rbbs.append(Rect(*bbs[i:i+4])) | ||
return rbbs | ||
|
||
def draw_rects(image, rects): | ||
for r in rects: | ||
image[r.ymin:r.ymax+1, r.xmin:r.xmin+2, 1] = 1 | ||
image[r.ymin:r.ymax+1, r.xmax:r.xmax+2, 1] = 1 | ||
image[r.ymin:r.ymin+2, r.xmin:r.xmax+1, 1] = 1 | ||
image[r.ymax:r.ymax+2, r.xmin:r.xmax+1, 1] = 1 | ||
return image | ||
|
||
def get_mask(feat): | ||
mask = np.empty((60, 80)) | ||
for y in range(15): | ||
for x in range(20): | ||
mask[y*4:(y+1)*4, x*4:(x+1)*4] = feat[:, y, x].reshape((4, 4)) | ||
return mask | ||
|
||
def dump_image(net, mask, rects, path): | ||
image = net.deprocess('data', net.blobs['data'].data[4]) | ||
zoomed_mask = np.empty((480, 640)) | ||
zoomed_mask = scipy.ndimage.zoom(mask, 8, order=0) | ||
masked_image = image.transpose((2, 0, 1)) | ||
masked_image[0, :, :] += zoomed_mask | ||
masked_image = np.clip(masked_image, 0, 1) | ||
masked_image = masked_image.transpose((1, 2, 0)) | ||
boxed_image = np.copy(masked_image) | ||
if len(rects) > 0: | ||
boxed_image = draw_rects(boxed_image, rects) | ||
Image.fromarray( | ||
(boxed_image * 255).astype('uint8')).save(path) | ||
|
||
|
||
def get_rects(feat, mask): | ||
hard_mask = np.round(mask + 0.3) | ||
bb = np.empty((4, 60, 80)) | ||
for y in range(15): | ||
for x in range(20): | ||
for c in range(4): | ||
bb[c, y*4:(y+1)*4, x*4:(x+1)*4] = feat[c*16:(c+1)*16, y, x].reshape((4, 4)) | ||
|
||
for c in range(4): | ||
bb[c, :, :] *= hard_mask | ||
|
||
y_offset = np.array([np.arange(16, 480, 32)]).T | ||
y_offset = np.tile(y_offset, (1, 20)) | ||
x_offset = np.arange(16, 640, 32) | ||
x_offset = np.tile(x_offset, (15, 1)) | ||
y_offset = scipy.ndimage.zoom(y_offset, 4, order=0) | ||
x_offset = scipy.ndimage.zoom(x_offset, 4, order=0) | ||
bb[0, :, :] += x_offset | ||
bb[2, :, :] += x_offset | ||
bb[1, :, :] += y_offset | ||
bb[3, :, :] += y_offset | ||
|
||
selected_rects = hard_mask > 0 | ||
num_rects = np.sum(selected_rects) | ||
rects = np.empty((num_rects, 4)) | ||
for i in range(4): | ||
rects[:, i] = bb[i, selected_rects] | ||
rects = rects[np.logical_and((rects[:, 2] - rects[:, 0]) > 0, (rects[:, 3] - rects[:, 1]) > 0), :] | ||
rects[:, (2, 3)] -= rects[:, (0, 1)] | ||
rects = np.clip(rects, 0, 640) | ||
rects = [rects[i, :] for i in range(rects.shape[0])] | ||
rects, scores = cv2.groupRectangles(rects, 4, 0.4) | ||
|
||
rectangles = [] | ||
if len(rects) == 0: | ||
return rectangles | ||
for i in range(rects.shape[0]): | ||
rectangles.append(Rect(rects[i, 0], rects[i, 1], rects[i, 0] + rects[i, 2], rects[i, 1] + rects[i, 3])) | ||
return rectangles |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
import numpy as np | ||
import scipy | ||
import matplotlib.pyplot as plt | ||
import caffe | ||
import sys | ||
import Image | ||
import time | ||
import cv2 | ||
import argparse | ||
|
||
from driving_utils import * | ||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--gt_label', required=True) | ||
parser.add_argument('--dump_images', action='store_true') | ||
parser.add_argument('--output_path') | ||
args = parser.parse_args() | ||
|
||
if args.dump_images: | ||
assert args.output_path is not None | ||
|
||
net = caffe.Classifier('/deep/u/willsong/caffe/models/brody/deploy.prototxt', | ||
'/deep/u/willsong/caffe/models/brody/caffe_brody_train_iter_200000.caffemodel') | ||
net.set_phase_test() | ||
net.set_mode_gpu() | ||
net.set_mean('data', np.load('/deep/u/willsong/caffe/python/driving_mean.npy')) # ImageNet mean | ||
net.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1] | ||
net.set_channel_swap('data', (2, 1, 0)) # the reference model has channels in BGR order instead of RGB | ||
|
||
tp = 0 | ||
fp = 0 | ||
fn = 0 | ||
for line in open(args.gt_label).readlines(): | ||
tokens = line.split() | ||
fname = tokens[0] | ||
bbs = tokens[2:] | ||
gt_bbs = get_gt_bbs(bbs) | ||
|
||
img_name = fname.split('/')[-1] | ||
# print img_name, '...', | ||
start = time.time() | ||
scores = net.ff([caffe.io.load_image(fname)]) | ||
# print 'done ff, took %f seconds' % (time.time() - start) | ||
|
||
mask = get_mask(net.blobs['pixel-prob'].data[4]) | ||
rects = get_rects(net.blobs['bb-output'].data[4], mask) | ||
|
||
if args.dump_images: | ||
assert output_path != '' | ||
image = net.deprocess('data', net.blobs['data'].data[4]) | ||
zoomed_mask = np.empty((480, 640)) | ||
zoomed_mask = scipy.ndimage.zoom(mask, 8, order=0) | ||
masked_image = image.transpose((2, 0, 1)) | ||
masked_image[0, :, :] += zoomed_mask | ||
masked_image = np.clip(masked_image, 0, 1) | ||
masked_image = masked_image.transpose((1, 2, 0)) | ||
boxed_image = np.copy(masked_image) | ||
if len(rects) > 0: | ||
boxed_image = draw_rects(boxed_image, rects) | ||
Image.fromarray( | ||
(boxed_image * 255).astype('uint8')).save(args.output_path + '/' + img_name) | ||
|
||
used_rect = set() | ||
for bb in gt_bbs: | ||
matched = False | ||
for i, rect in enumerate(rects): | ||
if i in used_rect: | ||
continue | ||
if bb.jaccard(rect) > 0.5: | ||
tp += 1 | ||
used_rect.add(i) | ||
matched = True | ||
break | ||
if not matched: | ||
fn += 1 | ||
fp += len(rects) - len(used_rect) | ||
if tp + fp > 0 and tp + fn > 0: | ||
print 'Precision: %f, Recall: %f' % (float(tp) / (tp + fp), float(tp) / (tp + fn)) | ||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters