Skip to content

by-student-2017/lammps_education_metal_win

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

lammps_education_metal_win

  • HEA = High Entropy Alloy

lammps (windows 11 (64 bit))

Installation (Lammps)

  1. LAMMPS Windows Installer Repository (http://packages.lammps.org/windows.html) -> LAMMPS Binaries Repository: ./legacy/admin/64bit (https://rpm.lammps.org/windows/legacy/admin/64bit/index.html)
  2. LAMMPS-64bit-22Dec2022-MSMPI-admin.exe (https://rpm.lammps.org/windows/legacy/admin/64bit/LAMMPS-64bit-22Dec2022-MSMPI-admin.exe)
  • LAMMPS Windows Installer Repository -> legacy -> admin -> 64bit -> LAMMPS-64bit-22Dec2022-MSMPI-admin.exe

Microsoft MPI

  1. Microsoft MPI v10.1.2 (https://www.microsoft.com/en-us/download/details.aspx?id=100593)

Gnuplot, Ovito and Python3

Python3 (installation) on PowerShell

  1. python3
  2. python3 -m pip install numpy

Usage (MS-MPI version)

  1. click run_msmpi.bat
  2. cfg folder > click *.cfg

plot the temperature of each atom

  • MSMPI_heat_map version file
  1. *.cfg -> Ovito -> (upper right) Add modification...
  2. Color coding -> Input property: f_ave_tempatom
  3. (click) Adjust range

lammps (windows 10 (64 bit))

Installation

  1. LAMMPS Windows Installer Repository (http://packages.lammps.org/windows.html) > their own download area > 64bit (https://rpm.lammps.org/windows/admin/64bit/index.html)
  2. LAMMPS-64bit-18Jun2019.exe (https://rpm.lammps.org/windows/admin/64bit/LAMMPS-64bit-18Jun2019.exe)

Gnuplot, Ovito and Python3

Usage

  1. click run.bat
  2. cfg folder > click *.cfg

How to change to another potential

  1. notepad in.lmp

#----------(before)----------

#-----(Fe-Ni-Cr) (FCC)

#pair_style eam/fs

#pair_coeff * * ../potentials/eam/Fe-Ni-Cr_fcc.eam.fs Fe Ni Cr

#-----(Fe-Cr-W)

pair_style hybrid/overlay eam/alloy eam/fs

pair_coeff * * eam/alloy ../potentials/eam/FeCrW_d.eam.alloy Fe Cr W

pair_coeff * * eam/fs ../potentials/eam/FeCrW_s.eam.fs Fe Cr W

#---------------------------

#----------(after)----------

#-----(Fe-Ni-Cr) (FCC)

pair_style eam/fs

pair_coeff * * ../potentials/eam/Fe-Ni-Cr_fcc.eam.fs Fe Ni Cr

#-----(Fe-Cr-W)

#pair_style hybrid/overlay eam/alloy eam/fs

#pair_coeff * * eam/alloy ../potentials/eam/FeCrW_d.eam.alloy Fe Cr W

#pair_coeff * * eam/fs ../potentials/eam/FeCrW_s.eam.fs Fe Cr W

#---------------------------

Reference_eam_database (Generalized EAM = GEAM)

  • official version: Mg, Ti, Zr, Ta, Mo, W, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, Al, Pb
  • test version: (good <=) V, Ca, Na, Cr, Mn, Nb, Ir, Sr, Rh, Ru, Os, Hf, Re, Zn (=> bad) (compared to QE (DFT+PAW))
  • Other elements have parameters, but don't expect accuracy. (e.g., Be, Y, Sn, B, etc)
  • EAM does not consider angular dependence. Keep in mind that a system with strong angular dependence will have poor prediction accuracy.
  • Any combination of these is possible. Don't expect too much about the "test version".
  1. (open) Reference_eam_database
  2. (open) EAM.input (on notepad, etc)
  3. (Rewrite the elements, or reduce or increase the set of "&funccard" to "&end".)
  4. (click) run.bat
  5. (You can get EAM potential: XX_Zhou04.eam.alloy)

tutorial_8_elastic

  1. notepad potential.mod
  2. run.bat
  • notepad potential.mod (set potential)
  • notepad init.mod (set masses for sw, tersoff or bop potential)

tutorial_9_elastic_Temp

  1. notepad potential.mod
  2. notepad init.mod
  3. run.bat
  • notepad potential.mod (set potential)
  • notepad init.mod (set temperature and masses)

tutorial_10_phonon-primitive-cell

tutorial_11_hybrid

  • The Example of EAM + MEAM + ADP hybrid potential
  • If you are lucky enough to have all the potentials you want to calculate, even if they are separate, you can calculate them by hybridizing them like this.

tutorial_12_interface

  • It is an example of an interface. In addition, I recommend watching “Tutorials_by_NextZenStudent” and Youtube videos.

tutorial_13_Machine_Learning_potential_MSMPI

  • Calculation using potential by neural network. OpenKIM is available in the Linux version, so if you want to use more potential, please try the Linux version.

Help create grain boundaries


units and potential

units metal

・Stillinger-Weber (SW)

・Tersoff

・EAM, FS

・MEAM

・ADP

・REBO, AIREBO

・COMB

・EIM

・BOP

・adiabatic core/shell model

・Streitz-Mintmire

・vashishta


potential files

potentials

[1] NIST Interatomic Potential https://www.ctcms.nist.gov/potentials/ https://www.ctcms.nist.gov/potentials/resources.html

[2] Database of Published Interatomic Potential Parameters https://www.ucl.ac.uk/klmc/Potentials/

[3] EAM potentials https://sites.google.com/site/eampotentials/Home

[4] JARVIS for Force-fields https://www.ctcms.nist.gov/~knc6/periodic.html

[5] Embedded Atom Method (EAM) Tabulation https://atsimpotentials.readthedocs.io/en/latest/potentials/eam_tabulation.html

[6] Carbon Potentials http://www.carbonpotentials.org/potentials

[7] XMD - Molecular Dynamics for Metals and Ceramics http://xmd.sourceforge.net/eam.html

[8] Potentials generated with potfit https://www.potfit.net/wiki/doku.php?id=potentials:main

[9] Interatomic Potential Generation https://icme.hpc.msstate.edu/mediawiki/index.php/Interatomic_Potential_Generation

[10] Potentials https://norman.jiht.ru/wiki/index.php/Potentials

[11] Dr. Adri van Duin https://www.engr.psu.edu/adri/

[12] Welcome to the Knowledgebase of Interatomic Models! (OpenKIM) https://openkim.org/

[13] potential_LAMMPS Reference Records https://github.com/usnistgov/iprPy/tree/master/library/potential_LAMMPS

[14] KIST Integrated Force Field Platform http://kiff.vfab.org/

[15] Molecular Dynamics (MD) Simulations Based Design and Process Optimization of Solar Cells https://www.osti.gov/servlets/purl/1241668

[16] QC Method http://qcmethod.org/

Input file

Metal

[IFM1] P. Malakar et al., ACS Appl. Nano Mater. 5 (2022) 16489-16499. https://doi.org/10.1021/acsanm.2c03564 (lammps input file)

[IFM2] S. K. Achar et al., J. Chem. Theory Comput. 18 (2022) 3593-3606. https://doi.org/10.1021/acs.jctc.2c00010

[IFM3] M. Qamar et al., J. Chem. Theory, Comput. XXX (2023) XXX-XXXX. https://doi.org/10.1021/acs.jctc.2c01149

[IFM4] Y. A. Zulueta et al., Inorg. Chem. 59 (2020) 11841-11846. https://doi.org/10.1021/acs.inorgchem.0c01923 (Transition-Metal-Doped Li2SnO3)

[IFM5] M. Li et al., Nanomaterials 9 (2019) 347. https://doi.org/10.3390/nano9030347 (Graphene, The temperature of each atom)

[IFM6] Y.- P. Zhou et al., Sci. Rep. 7 (2017) 45516. https://www.nature.com/articles/srep45516

[IFM7] G. W. J. Mclntosh et al., (2016) https://cradpdf.drdc-rddc.gc.ca/PDFS/unc244/p804516_A1b.pdf

[IFM8] C. Wilkinson et al., SoftwareX 14 (2021) 100683. https://doi.org/10.1016/j.softx.2021.100683

[IFM9] Al-Cu Symmetric/Asymmetric Tilt Grain Boundary Dataset https://materialsdata.nist.gov/handle/11256/358

[IFM10] C.N. Andoh et al., Journal of Applied Science and Technology (JAST), Vol. 22, Nos. 1 & 2, 2017/18, pp. 01 - 13 https://www.researchgate.net/profile/Collins-Nana-Andoh/publication/327390429_MOLECULAR_DYNAMICS_SIMULATION_OF_MECHANICAL_DEFORMATION_OF_AUSTENITIC_STAINLESS_STEELS_Fe-Ni-Cr_ALLOYS_AT_SUPERCRITICAL_WATER_CONDITIONS/links/62ae336c938bee3e3f3f2253/MOLECULAR-DYNAMICS-SIMULATION-OF-MECHANICAL-DEFORMATION-OF-AUSTENITIC-STAINLESS-STEELS-Fe-Ni-Cr-ALLOYS-AT-SUPERCRITICAL-WATER-CONDITIONS.pdf

[IFM11] V. Kocevski et al., J. Nucl. Mater. 562 (2022) 153553. https://doi.org/10.1016/j.jnucmat.2022.153553

[IFM12] Z. Tang et al., Crystals 10 (2020) 329; https://doi.org/10.3390/cryst10040329

[IFM13] Z. Zhang, Thesis.; https://ttu-ir.tdl.org/handle/2346/73470

[IFM14] M. G. Muraleedharan et al., AIP Advances 7 (2017) 125022. https://doi.org/10.1063/1.5003158

[IFM15] A. S. Butterfield, https://www.byui.edu/documents/physics/Theses/2010-2015/Aaron-ButterfieldS13.pdf

Other

[IFO1] P. G. Boyd et al., J. Phys. Chem. Lett. 8 (2017) 357-363. https://doi.org/10.1021/acs.jpclett.6b02532 (MOF)

[IFO2] K. Banlusan et al., J. Phys. Chem. C 119 (2015) 25845-25852. https://doi.org/10.1021/acs.jpcc.5b05446 (MOF)

[IFO3] M. Witman et al., J. Phys. Chem. Lett. 10 (2019) 5929-5934. https://doi.org/10.1021/acs.jpclett.9b02449 (MOF)

[IFO4] J. P. Ruffley et al., J. Phys. Chem. C 124 (2020) 19873. https://doi.org/10.1021/acs.jpcc.0c07650 (MOF)

[IFO5] R. Anderson et al., Chem. Mater, 32 (2020) 8106-8119. https://doi.org/10.1021/acs.chemmater.0c00744 (MOF)

[IFO6] A. v. Wedelstedt et al., J. Chem. Inf. Model. 62 (2022) 1154-1159. https://doi.org/10.1021/acs.jcim.2c00158 (input file of MOF on Lammps and CP2k code)

[IFO7] J. J. Wardzala et al., J. Phys. Chem. C 124 (2020) 28469-28478. https://doi.org/10.1021/acs.jpcc.0c07040 (MOF)

[IFO8] M. C. Oliver et al., J. Phys. Chem. C 127 (2023) 6503-6514. https://doi.org/10.1021/acs.jpcc.2c08695 (MOF)

[IFO9] H. Xu et al., J. Chem. Theory Comput. 18 (2022) 2826-2835. https://doi.org/10.1021/acs.jctc.2c00094 (MOF) https://archive.materialscloud.org/record/2022.37

[IFO10] J. M. Findley et al., J. Phys. Chem. C 125 (2021) 8418-8429. https://doi.org/10.1021/acs.jpcc.1c00943 (input file of MOF on Lammps and RASPA code)

[IFO11] A. S. S. Daou et al., J. Phys. Chem. C 125 (2021) 5296-5305. https://doi.org/10.1021/acs.jpcc.0c09952 (input file of MOF on Lammps and RASPA code)

[IFO12] Z. Zhu et al., ACS Omega 7 (2022) 37640-37653. https://doi.org/10.1021/acsomega.2c04517 (input file of MOF on Lammps and RASPA code)

[IFO13] T. Weng et al., J. Phys. Chem. A 123 (2019) 3000-3012. https://doi.org/10.1021/acs.jpca.8b12311 (ZIF-8)

[IFO14] S. Wang et al., J. Chem. Theory Comput. 17 (2021) 5198-5213. https://doi.org/10.1021/acs.jctc.0c01132 (Zeolite)

[IFO15] P. Saidi et al., J. Phys. Chem. C 124 (2020) 26864-26873. https://doi.org/10.1021/acs.jpcc.0c08817 (GO)

[IFO16] M. L. Urquiza et al., ACS Nano 15 (2021) 12945-12954. https://doi.org/10.1021/acsnano.1c01466 (HfO2)

[IFO17] M. Deffner et al., J. Chem. Theory Comput. 19 (2023) 992-1002. https://doi.org/10.1021/acs.jctc.2c00648

[IFO18] W. A. Pisani et al., Ind. Eng. Chem. Res. 60 (2021) 13604-13613. https://doi.org/10.1021/acs.iecr.1c02440

[IFO19] K. Goloviznina et al., J. Chem. Theory Comput. 17 (2021) 1606-1617. https://doi.org/10.1021/acs.jctc.0c01002

[IFO20] C. Han et al., J. Phys. Chem. C 124 (2020) 20203-20212. https://doi.org/10.1021/acs.jpcc.0c05942

[IFO21] S. Sharma et al., J. Phys. Chem. A 124 (2020) 7832-7842. https://doi.org/10.1021/acs.jpca.0c06721

[IFO22] E. Braun et al., J. Chem. Theory Comput. 14 (2018) 5262-5272. https://doi.org/10.1021/acs.jctc.8b00446

[IFO23] Y. Chen et al., J. Phys. Chem. B 125 (2021) 8193-8204. https://doi.org/10.1021/acs.jpcb.1c01966

[IFO24] Y. Zhang et al., J. Phys. Chem. B 124 (2020) 5251-5264. https://doi.org/10.1021/acs.jpcb.0c04058

[IFO25] C. M. Tenney et al., J. Phys. Chem. C 117 (2013) 24673-24684. https://doi.org/10.1021/jp4039122

[IFO26] S. K. Achar et al., J. Phys. Chem. C 125 (2021) 14874-14882. https://doi.org/10.1021/acs.jpcc.1c01411

Structure

[S1] N. Sakhavand et al., ACS Appl. Mater. Interfaces 7 (2015) 18312-18319. https://doi.org/10.1021/acsami.5b03967

[S2] M. Agrawal et al., J. Phys. Chem. Lett. 10 (2019) 7823-7830. https://doi.org/10.1021/acs.jpclett.9b03119

[S3] R. Thyagarajan et al., Chem. Mater. 32 (2020) 8020-8033. https://doi.org/10.1021/acs.chemmater.0c03057

References

[MC1] Monte Carlo simulations with LAMMPS https://lammps.sandia.gov/workshops/Aug15/PDF/talk_Thompson1.pdf

[MC2] fix tfmc command (amorphous -> crystal) https://lammps.sandia.gov/doc/fix_tfmc.html https://lammps.sandia.gov/threads/msg69314.html https://lammps.sandia.gov/threads/msg69318.html https://lammps.sandia.gov/threads/msg69323.html https://lammps.sandia.gov/threads/msg69348.html https://lammps.sandia.gov/threads/msg69352.html

[SGC1] vcsgc-lammps (semi-grandcanonical) (pair_style eam/cd, eam/alloy or eam/fs) https://vcsgc-lammps.materialsmodeling.org/

[GCMC1] fix gcmc command https://lammps.sandia.gov/doc/fix_gcmc.html

[GCMC2] Grand canonical Monte Carlo simulations of gas uptake in microporous materials using LAMMPS https://www.osti.gov/servlets/purl/1120653

[GCMC3] pysimm https://www.sciencedirect.com/science/article/pii/S2352711018300141 (paper) https://pysimm.org/ (code)

[R1] Nanofluidics An Introduction https://books.google.co.jp/books?id=VwqWDwAAQBAJ

How to modify LAMMPS

Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics

Nikolov, S., et al., npj Comput Mater 7, 153 (2021). https://doi.org/10.1038/s41524-021-00617-2

Tersoff Benchmarking of Be-C-H Interatomic Potential

Deep-MD

Ren, Q., et al., Nat. Mater. (2023). https://doi.org/10.1038/s41563-023-01560-x

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published