Datasets are CIFAR10 and ImageNet100.
Our codebase accesses the datasets from ./data/
and checkpoints from ./results/checkpoints/
by default.
├── ...
├── data
│
├── results
│
├── main.py
├── ...
All of the adversarial data are generated using torchattacks.
Generate noise distribution by gen_dist.py or download from here. Put distributions under 'data/dist/'.
python main.py
--config configs/datasets/general/DIS_CIFAR10.yml
configs/pipelines/train/DIS_train_CIFAR10.yml
--force_merge True
--preprocessor.name ImageNet
python main.py
--config configs/datasets/general/DIS_CIFAR10.yml
configs/pipelines/train/DIS_test_CIFAR10.yml
--force_merge True
--preprocessor.name ImageNet
The checkpoints are coming soon...
## Dependencies
python 3.8.8, PyTorch = 1.10.0, cudatoolkit = 11.7, torchvision, tqdm, scikit-learn, mmcv, numpy, opencv-python, dlib, Pillow