Skip to content

Latest commit

 

History

History
5 lines (3 loc) · 2.04 KB

2312.00860.md

File metadata and controls

5 lines (3 loc) · 2.04 KB

Segment Any 3D Gaussians

Interactive 3D segmentation in radiance fields is an appealing task since its importance in 3D scene understanding and manipulation. However, existing methods face challenges in either achieving fine-grained, multi-granularity segmentation or contending with substantial computational overhead, inhibiting real-time interaction. In this paper, we introduce Segment Any 3D GAussians (SAGA), a novel 3D interactive segmentation approach that seamlessly blends a 2D segmentation foundation model with 3D Gaussian Splatting (3DGS), a recent breakthrough of radiance fields. SAGA efficiently embeds multi-granularity 2D segmentation results generated by the segmentation foundation model into 3D Gaussian point features through well-designed contrastive training. Evaluation on existing benchmarks demonstrates that SAGA can achieve competitive performance with state-of-the-art methods. Moreover, SAGA achieves multi-granularity segmentation and accommodates various prompts, including points, scribbles, and 2D masks. Notably, SAGA can finish the 3D segmentation within milliseconds, achieving nearly 1000x acceleration compared to previous SOTA.

交互式3D辐射场分割是一个吸引人的任务,因为它在3D场景理解和操纵中非常重要。然而,现有方法在实现细粒度、多粒度分割或应对大量计算开销方面面临挑战,这限制了实时互动。在这篇论文中,我们介绍了“分割任意3D高斯”(SAGA),这是一种新颖的3D交互式分割方法,它将2D分割基础模型与3D高斯喷溅(3DGS)无缝融合,后者是辐射场的最新突破。SAGA通过精心设计的对比训练,高效地将分割基础模型生成的多粒度2D分割结果嵌入到3D高斯点特征中。在现有基准测试上的评估表明,SAGA能够与最先进的方法竞争。此外,SAGA实现了多粒度分割,并适应各种提示,包括点、涂鸦和2D蒙版。值得注意的是,SAGA可以在几毫秒内完成3D分割,与以前的最先进技术相比,几乎实现了1000倍的加速。