Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added varcorr argument to predcorrect method #60

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 10 additions & 5 deletions R/binless.R
Original file line number Diff line number Diff line change
Expand Up @@ -147,7 +147,12 @@ binlessfit <- function(o, conf.level = .95, llam.quant = NULL, span = NULL, ...)
obs <- o$obs
sim <- o$sim

if(isTRUE(o$loess.ypc)) {
if (isTRUE(o$loess.ypc)) {
if (isTRUE(o$varcorr)) {
warning("Variability correction is not supported by binless VPC and won't be applied")
o$varcorr <- FALSE
}

pred <- o$pred
obs <- cbind(obs, pred)
sim[, pred := rep(pred, len=.N), by = .(repl)]
Expand Down Expand Up @@ -218,13 +223,13 @@ binlessfit <- function(o, conf.level = .95, llam.quant = NULL, span = NULL, ...)
strat.split.sim <- strat.split.sim[lapply(strat.split.sim,NROW)>0]
}

if(isTRUE(o$loess.ypc) && !is.null(o$strat)) {
if(isTRUE(o$predcor.log)) {
for(i in seq_along(strat.split)) {
if (isTRUE(o$loess.ypc) && !is.null(o$strat)) {
if (isTRUE(o$predcor.log)) {
for (i in seq_along(strat.split)) {
strat.split[[i]][, l.ypc := y + (fitted(loess(pred ~ x, span = span[[i]], na.action = na.exclude, .SD)) - pred)]
}
} else {
for(i in seq_along(strat.split)) {
for (i in seq_along(strat.split)) {
strat.split[[i]][, l.ypc := y * (fitted(loess(pred ~ x, span = span[[i]], na.action = na.exclude, .SD)) / pred)]
}
}
Expand Down
22 changes: 17 additions & 5 deletions R/plot.R
Original file line number Diff line number Diff line change
Expand Up @@ -122,9 +122,15 @@ plot.tidyvpcobj <- function(x,
ylab <- NULL
}
if (isTRUE(vpc$predcor)) {
ylab <- ifelse(length(ylab) == 0,
"Prediction Corrected",
paste0(ylab, "\nPrediction Corrected"))
if (isTRUE(vpc$varcorr)) {
ylab <- ifelse(length(ylab) == 0,
"Prediction and Variability Corrected",
paste0(ylab, "\nPrediction and Variability Corrected"))
} else {
ylab <- ifelse(length(ylab) == 0,
"Prediction Corrected",
paste0(ylab, "\nPrediction Corrected"))
}
}
}

Expand Down Expand Up @@ -233,7 +239,8 @@ plot_continuous <-
point.shape,
point.stroke,
point.alpha) {
alq <-bin <- blq <- hi <-l.ypc <-lo <- md <- pname <- qname <- x <- xleft <- xright <- y <- ypc <- NULL
alq <- bin <- blq <- hi <- l.ypc <- lo <- md <- pname <- qname <- NULL
x <- xleft <- xright <- y <- ypc <- ypcvc <- NULL
. <- list
method <- vpc$vpc.method$method
qlvls <- levels(vpc$stats$qname)
Expand Down Expand Up @@ -306,8 +313,13 @@ plot_continuous <-
if (isTRUE(vpc$predcor) && method == "binless") {
points.dat[, y := l.ypc]
} else if (isTRUE(vpc$predcor)) {
points.dat[, y := ypc]
if (isTRUE(vpc$varcorr)) {
points.dat[, y := ypcvc]
} else {
points.dat[, y := ypc]
}
}

if (show.binning) {
reorder2 <- function(y, x) {
y <- stats::reorder(y, x)
Expand Down
187 changes: 117 additions & 70 deletions R/vpcstats.R
Original file line number Diff line number Diff line change
Expand Up @@ -21,19 +21,25 @@ NULL

#' Specify observed dataset and variables for VPC
#'
#' The observed function is the first function in the vpc piping chain and is used for specifying observed data and variables for VPC. Note: Observed
#' data must not contain missing DV and may require filtering \code{MDV == 0} before generating VPC.
#' The observed function is the first function in the vpc piping chain and is
#' used for specifying observed data and variables for VPC. Note: Observed data
#' must not contain missing DV and may require filtering \code{MDV == 0} before
#' generating VPC. Also observed data must be ordered by: Subject (ID), IVAR
#' (Time)
#'
#' @param o A \code{data.frame} of observation data.
#' @param x Numeric x-variable, typically named TIME.
#' @param yobs Numeric y-variable, typically named DV.
#' @param pred Population prediction variable, typically named PRED.
#' @param blq Logical variable indicating below limit of quantification.
#' @param lloq Number or numeric variable in data indicating the lower limit of quantification.
#' @param lloq Number or numeric variable in data indicating the lower limit of
#' quantification.
#' @param alq Logical variable indicating above limit of quantification .
#' @param uloq Number or numeric variable in data indicating the upper limit of quantification.
#' @param uloq Number or numeric variable in data indicating the upper limit of
#' quantification.
#' @param ... Other arguments.
#' @return A \code{tidyvpcobj} containing both original data and observed data formatted with \code{x} and \code{y} variables as specified in function.
#' @return A \code{tidyvpcobj} containing both original data and observed data
#' formatted with \code{x} and \code{y} variables as specified in function.
#' Resulting data is of class \code{data.frame} and \code{data.table}.
#' @examples
#'
Expand Down Expand Up @@ -67,10 +73,11 @@ observed.data.frame <- function(o, x, yobs, pred=NULL, blq=NULL, lloq=-Inf, alq=

#' Specify simulated dataset and variables for VPC
#'
#' The simulated function is used for specifying simulated input data and variables for VPC. Note: Simulated data must not
#' contain missing DV and may require filtering \code{MDV == 0} before generating VPC. The ordering of observed and simulated
#' data must also be consistent, with replicates in simulated data stacked on top of each other.
#'
#' The simulated function is used for specifying simulated input data and
#' variables for VPC. Note: Simulated data must not contain missing DV and may
#' require filtering \code{MDV == 0} before generating VPC. Simulated data must
#' be ordered by: Replicate, Subject (ID), IVAR (Time).
#'
#' @param o A \code{tidyvpcobj}.
#' @param data A \code{data.frame} of simulated data.
#' @param ysim Numeric y-variable, typically named DV.
Expand Down Expand Up @@ -375,7 +382,7 @@ binning <- function(o, ...) UseMethod("binning")
#' @rdname binning
#' @export
binning.tidyvpcobj <- function(o, bin, data=o$data, xbin="xmedian", centers, breaks, nbins, altx, stratum=NULL, by.strata=TRUE, ...) {
keep <- i <- ypc <- y <- NULL
keep <- i <- NULL
. <- list

# If xbin is numeric, then that is the bin
Expand Down Expand Up @@ -484,7 +491,7 @@ binning.tidyvpcobj <- function(o, bin, data=o$data, xbin="xmedian", centers, bre
}

if (is.function(bin)) {
xdat <- data.table(i=1:nrow(o$obs), x=x)
xdat <- data.table(i = 1:nrow(o$obs), x = x)
if (any(is.na(xdat[filter]$x))) {
warning("x contains missing values, which could affect binning")
}
Expand All @@ -493,7 +500,7 @@ binning.tidyvpcobj <- function(o, bin, data=o$data, xbin="xmedian", centers, bre
}
if (by.strata && !is.null(o$strat)) {
sdat <- copy(o$strat)
temp <- xdat[filter, .(i=i, j=do.call(bin, c(list(x), args, .BY))), by=sdat[filter]]
temp <- xdat[filter, .(i = i, j = do.call(bin, c(list(x), args, .BY))), by = sdat[filter]]
j <- temp[order(i), j]
} else {
j <- xdat[filter, do.call(bin, c(list(x), args))]
Expand Down Expand Up @@ -527,38 +534,48 @@ binning.tidyvpcobj <- function(o, bin, data=o$data, xbin="xmedian", centers, bre
} else {
stop("Invalid xbin")
}

vpc.method <- list(method = "binning")

# check if user supplied predcorrect before binning
if (!is.null(o$predcor) && o$predcor) {
pred <- o$pred
log <- o$predcor.log
mpred <- data.table(stratbin, pred)[, mpred := median(pred), by = stratbin]$mpred

if (log) {
o$obs[, ypc := (mpred - pred) + y]
o$sim[, ypc := (mpred - pred) + y]
} else {
o$obs[, ypc := ifelse(pred == 0, 0, (mpred / pred) * y)]
o$sim[, ypc := ifelse(rep(pred, times = nrow(o$sim) / nrow(o$obs)) == 0, 0, (mpred / pred) * y)]
}
}

update(o, xbin=xbin, vpc.method = vpc.method)
if (isTRUE(o$predcor)) {
o <-
get_predcorrect(
o,
stratbin,
pred = o$pred,
log = o$predcor.log,
varcorr = o$varcorr
)
} else if (isTRUE(o$varcorr)) {
warning("Cannot apply variance prediction correction when predcor flag is off.")
}

update(o, xbin = xbin, vpc.method = vpc.method)
}


#' Prediction corrected Visual Predictive Check (pcVPC)
#'
#' Specify prediction variable for pcVPC.
#'
#' @param o A \code{tidyvpcobj}.
#' @param o A `tidyvpcobj`.
#' @param pred Prediction variable in observed data.
#' @param data Observed data supplied in \code{observed()} function.
#' @param data Observed data supplied in `observed()` function.
#' @param ... Other arguments to include.
#' @param log Logical indicating whether DV was modeled in logarithmic scale.
#' @return Updates \code{tidyvpcobj} with required information to performing prediction correction, which includes the \code{predcor} logical indicating whether
#' prediction corrected VPC is to be performed, the \code{predcor.log} logical indicating whether the DV is on a log-scale, and the \code{pred} prediction
#' column from the original data.
#' @param varcorr Logical indicating whether variability correction should be
#' applied for prediction corrected dependent variable
#' @return Updates `tidyvpcobj` with required information to perform prediction
#' correction, which includes the `predcor` logical indicating whether
#' prediction corrected VPC is to be performed, the `predcor.log` logical
#' indicating whether the DV is on a log-scale, the `varcorr` logical
#' indicating whether variability correction for prediction corrected
#' dependent variable is applied and the `pred` prediction column from the
#' original data. Both `obs` and `sim` data tables in the returned
#' `tidyvpcobj` object have additional `ypc` column with the results of
#' prediction correction and `ypcvc` column if variability correction is
#' requested.
#' @examples
#' \donttest{
#' require(magrittr)
Expand All @@ -571,62 +588,92 @@ binning.tidyvpcobj <- function(o, bin, data=o$data, xbin="xmedian", centers, bre
#'
#' obs_data$PRED <- sim_data[REP == 1, PRED]
#'
#' vpc <- observed(obs_data, x=TIME, y=DV) %>%
#' simulated(sim_data, y=DV) %>%
#' vpc <- observed(obs_data, x=TIME, yobs=DV) %>%
#' simulated(sim_data, ysim=DV) %>%
#' binning(bin = NTIME) %>%
#' predcorrect(pred=PRED) %>%
#' predcorrect(pred=PRED, varcorr = TRUE) %>%
#' vpcstats()
#'
#' # For binless loess prediction corrected, use predcorrect() before
#' # binless() and set loess.ypc = TRUE
#'
#' vpc <- observed(obs_data, x=TIME, y=DV) %>%
#' simulated(sim_data, y=DV) %>%
#' vpc <- observed(obs_data, x=TIME, yobs=DV) %>%
#' simulated(sim_data, ysim=DV) %>%
#' predcorrect(pred=PRED) %>%
#' binless(loess.ypc = TRUE) %>%
#' binless() %>%
#' vpcstats()
#' }
#'
#' @seealso \code{\link{observed}} \code{\link{simulated}} \code{\link{censoring}} \code{\link{stratify}} \code{\link{binning}} \code{\link{binless}} \code{\link{vpcstats}}
#' @seealso \code{\link{observed}} \code{\link{simulated}}
#' \code{\link{censoring}} \code{\link{stratify}} \code{\link{binning}}
#' \code{\link{binless}} \code{\link{vpcstats}}

#' @export
predcorrect <- function(o, ...) UseMethod("predcorrect")

#' @rdname predcorrect
#' @export
predcorrect.tidyvpcobj <- function(o, pred, data=o$data, ..., log=FALSE) {

ypc <- y <- NULL

if (missing(pred)) {
pred <- o$pred
} else {
pred <- rlang::eval_tidy(rlang::enquo(pred), data)
}
if (is.null(pred)) {
stop("No pred specified")
}

stratbin <- o$.stratbin
# predcorrect after binning, check if binning/binless has already been specified

if (!is.null(o$vpc.method)) {
if(o$vpc.method$method == "binless") {
o$vpc.method$loess.ypc <- TRUE
} else { #binning specified, perform ypc calculcation
mpred <- data.table(stratbin, pred)[, mpred := median(pred), by = stratbin]$mpred

if (log) {
o$obs[, ypc := (mpred - pred) + y]
o$sim[, ypc := (mpred - pred) + y]
predcorrect.tidyvpcobj <-
function(o,
pred,
data = o$data,
...,
log = FALSE,
varcorr = FALSE) {
if (missing(pred)) {
pred <- o$pred
} else {
pred <- rlang::eval_tidy(rlang::enquo(pred), data)
}
if (is.null(pred)) {
stop("No pred specified")
}

stratbin <- o$.stratbin
# predcorrect after binning, check if binning/binless has already been specified

if (!is.null(o$vpc.method)) {
if (o$vpc.method$method == "binless") {
o$vpc.method$loess.ypc <- TRUE
} else {
o$obs[, ypc := ifelse(pred == 0, 0, (mpred / pred) * y)]
o$sim[, ypc := ifelse(rep(pred, times = nrow(o$sim) / nrow(o$obs)) == 0, 0, (mpred / pred) * y)]
#binning specified, perform ypc calculcation
o <- get_predcorrect(o, stratbin, pred, log, varcorr)
}
}
}

update(o, predcor=TRUE, predcor.log=log, pred=pred)

update(
o,
predcor = TRUE,
predcor.log = log,
varcorr = varcorr,
pred = pred
)
}

get_predcorrect <- function(o, stratbin, pred, log, varcorr) {
ypcvc <- ypc <- y <- ij <- NULL
. <- list
mpred <-
data.table(stratbin, pred)[, mpred := median(pred), by = stratbin]$mpred

if (log) {
o$obs[, ypc := (mpred - pred) + y]
o$sim[, ypc := (mpred - pred) + y]
} else {
o$obs[, ypc := ifelse(pred == 0, 0, (mpred / pred) * y)]
o$sim[, ypc := ifelse(rep(pred, times = nrow(o$sim) / nrow(o$obs)) == 0, 0, (mpred / pred) * y)]
}

if (varcorr) {
ypcsdij <-
data.table(ypc = o$sim$ypc, ij = row.names(o$obs))[, .(ypcsdij = stats::sd(ypc)), by = ij]$ypcsdij
mypcsdij <-
data.table(stratbin, ypcsdij)[, mypcsdij := median(ypcsdij), by = stratbin]$mypcsdij
o$obs[, ypcvc := mpred + (y - mpred) * mypcsdij / ypcsdij]
o$sim[, ypcvc := mpred + (y - mpred) * mypcsdij / ypcsdij]
}

o
}

#' Remove prediction correction for Visual Predictive Check (VPC)
Expand All @@ -641,7 +688,7 @@ nopredcorrect <- function(o, ...) UseMethod("nopredcorrect")
#' @rdname nopredcorrect
#' @export
nopredcorrect.tidyvpcobj <- function(o, ...) {
update(o, predcor=FALSE)
update(o, predcor = FALSE)
}

#' @export
Expand Down
19 changes: 15 additions & 4 deletions R/vpcstats_fun.R
Original file line number Diff line number Diff line change
Expand Up @@ -29,16 +29,22 @@ vpcstats.tidyvpcobj <- function(o, vpc.type =c("continuous", "categorical"), qpr
type <- match.arg(vpc.type)
method <- o$vpc.method

stopifnot(method$method %in% c("binless", "binning"))
if (!isTRUE(method$method %in% c("binless", "binning"))) {
stop(
"A binning method should be specified through binning() or binless() execution before vpcstats() run."
)
}

stopifnot(length(qpred) == 3)

repl <- ypc <- y <- x <- blq <- lloq <- alq <- uloq <- NULL
repl <- ypc <- ypcvc <- y <- x <- blq <- lloq <- alq <- uloq <- NULL
. <- list
qconf <- c(0, 0.5, 1) + c(1, 0, -1)*(1 - conf.level)/2

obs <- o$obs
sim <- o$sim
predcor <- o$predcor
varcorr <- o$varcorr
stratbin <- o$.stratbin
xbin <- o$xbin
strat <- o$strat
Expand Down Expand Up @@ -197,8 +203,13 @@ vpcstats.tidyvpcobj <- function(o, vpc.type =c("continuous", "categorical"), qpr
.stratbinrepl <- data.table(stratbin, sim[, .(repl)])

if (isTRUE(predcor)) {
qobs <- obs[, quant_loq(ypc, probs=qpred, blq=blq, alq=alq, type = quantile.type), by=stratbin]
qsim <- sim[, quant_loq(ypc, probs=qpred, blq=FALSE, alq=FALSE, type = quantile.type), by=.stratbinrepl]
if (isTRUE(varcorr)) {
qobs <- obs[, quant_loq(ypcvc, probs=qpred, blq=blq, alq=alq, type = quantile.type), by=stratbin]
qsim <- sim[, quant_loq(ypcvc, probs=qpred, blq=FALSE, alq=FALSE, type = quantile.type), by=.stratbinrepl]
} else {
qobs <- obs[, quant_loq(ypc, probs=qpred, blq=blq, alq=alq, type = quantile.type), by=stratbin]
qsim <- sim[, quant_loq(ypc, probs=qpred, blq=FALSE, alq=FALSE, type = quantile.type), by=.stratbinrepl]
}
} else {
qobs <- obs[, quant_loq(y, probs=qpred, blq=blq, alq=alq , type = quantile.type), by=stratbin]
qsim <- sim[, quant_loq(y, probs=qpred, blq=FALSE, alq=FALSE, type = quantile.type), by=.stratbinrepl]
Expand Down
Loading
Loading