Skip to content

Commit

Permalink
add internvl2 example (intel-analytics#12102)
Browse files Browse the repository at this point in the history
* add internvl2 example

* add to README.md

* update

* add link to zh-CN readme
  • Loading branch information
ch1y0q authored Sep 20, 2024
1 parent ad1fe77 commit 2269768
Show file tree
Hide file tree
Showing 4 changed files with 240 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -276,6 +276,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| Baichuan | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan) |
| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2) |
| InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HuggingFace/LLM/internlm) |
| InternVL2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/internvl2) |
| Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen) |
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
Expand Down
1 change: 1 addition & 0 deletions README.zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -276,6 +276,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
| Baichuan | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan) |
| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2) |
| InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HuggingFace/LLM/internlm) |
| InternVL2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/internvl2) |
| Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen) |
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
Expand Down
101 changes: 101 additions & 0 deletions python/llm/example/GPU/HuggingFace/Multimodal/internvl2/chat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


import os
import time
import argparse
import requests
import torch
from PIL import Image
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer, CLIPImageProcessor


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for OpenGVLab/InternVL2-4B model')
parser.add_argument('--repo-id-or-model-path', type=str, default="OpenGVLab/InternVL2-4B",
help='The huggingface repo id for the OpenGVLab/InternVL2-4B model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default='https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=64, help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path
n_predict = args.n_predict

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
load_in_low_bit="sym_int4",
modules_to_not_convert=["vision_model"])
model = model.half().to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
model.eval()

query = args.prompt
image_processor = CLIPImageProcessor.from_pretrained(model_path)

if os.path.exists(image_path):
image = Image.open(image_path).convert('RGB')
else:
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')

pixel_values = image_processor(images=[image], return_tensors='pt').pixel_values
pixel_values = pixel_values.to('xpu')

question = "<image>" + query

generation_config = {
"max_new_tokens": n_predict,
"do_sample": False,
}

with torch.inference_mode():
# ipex_llm model needs a warmup, then inference time can be accurate
model.chat(
pixel_values=None,
question=question,
generation_config=generation_config,
tokenizer=tokenizer,
)

st = time.time()
res = model.chat(
tokenizer=tokenizer,
pixel_values=pixel_values,
question=question,
generation_config=generation_config,
history=[]
)
torch.xpu.synchronize()
end = time.time()

print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Chat Output', '-'*20)
print(res)
137 changes: 137 additions & 0 deletions python/llm/example/GPU/HuggingFace/Multimodal/internvl2/readme.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
# InternVL2
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on InternVL2 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [OpenGVLab/InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B) as a reference InternVL2 model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example: Predict Tokens using `chat()` API
In the example [chat.py](./chat.py), we show a basic use case for an InternVL2-4B model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install einops timm

```

#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install einops timm

```

### 2. Configures OneAPI environment variables for Linux

> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

```bash
source /opt/intel/oneapi/setvars.sh
```

### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>

<summary>For Intel iGPU</summary>

```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```

</details>

#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```

</details>

<details>

<summary>For Intel Arc™ A-Series Graphics</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>

> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

- chat with specified prompt:
```
python ./chat.py --prompt 'What is in the image?'
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the InternVL2 (e.g. `OpenGVLab/InternVL2-4B`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'OpenGVLab/InternVL2-4B'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `64`.

#### Sample Output

#### [OpenGVLab/InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B)

```log
-------------------- Input Image --------------------
https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg
-------------------- Input Prompt --------------------
What is in the image?
-------------------- Chat Output --------------------
The image shows a tiger lying on the grass.
```

The sample input image is:

<a href="https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg"><img width=400px src="https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg" ></a>

0 comments on commit 2269768

Please sign in to comment.