Skip to content

Commit

Permalink
LLM: add CodeLlama CPU and GPU examples (intel-analytics#9338)
Browse files Browse the repository at this point in the history
* LLM: add codellama CPU pytorch examples

* LLM: add codellama CPU transformers examples

* LLM: add codellama GPU transformers examples

* LLM: add codellama GPU pytorch examples

* LLM: add codellama in readme

* LLM: add LLaVA link
  • Loading branch information
JinBridger authored Nov 2, 2023
1 parent d4dffbd commit 97a3895
Show file tree
Hide file tree
Showing 10 changed files with 531 additions and 2 deletions.
4 changes: 3 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -156,10 +156,12 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Phi-1_5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) |
| Flan-t5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/flan-t5) |
| Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | |
| LLaVA | [link](python/llm/example/CPU/PyTorch-Models/Model/llava) | [link](python/llm/example/GPU/PyTorch-Models/Model/llava) |
| LLaVA | [link](python/llm/example/CPU/PyTorch-Models/Model/llava) | [link](python/llm/example/GPU/PyTorch-Models/Model/llava) |
| CodeLlama | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codellama) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/codellama) |
| Skywork | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/skywork) | |



***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***

---
Expand Down
4 changes: 3 additions & 1 deletion python/llm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,9 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Flan-t5 | [link](example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](example/GPU/HF-Transformers-AutoModels/Model/flan-t5) |
| Qwen-VL | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | |
| LLaVA | [link](example/CPU/PyTorch-Models/Model/llava) | [link](example/GPU/PyTorch-Models/Model/llava) |
| Skywork | [link](example/CPU/HF-Transformers-AutoModels/Model/skywork) | |
| CodeLlama | [link](example/CPU/HF-Transformers-AutoModels/Model/codellama) | [link](example/GPU/HF-Transformers-AutoModels/Model/codellama) |
| Skywork | [link](example/CPU/HF-Transformers-AutoModels/Model/skywork) | |


### Working with `bigdl-llm`

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
# CodeLlama
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on CodeLlama models. For illustration purposes, we utilize the [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) as reference CodeLlama models.

## 0. Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a CodeLlama model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm

pip install bigdl-llm[all] # install bigdl-llm with 'all' option
```

### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the CodeLlama model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'codellama/CodeLlama-7b-hf'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'def print_hello_world():'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the CodeLlama model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py
```

#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.

E.g. on Linux,
```bash
# set BigDL-Nano env variables
source bigdl-nano-init

# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py
```

#### 2.3 Sample Output
#### [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
def print_hello_world():
<FILL_ME>
-------------------- Output --------------------
def print_hello_world():
print("Hello World")
def print_hello_world_with_name(name):
print("Hello " + name)
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse

from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import CodeLlamaTokenizer

# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/docs/transformers/v4.34.1/model_doc/code_llama
CODELLAMA_PROMPT_FORMAT = "{prompt}\n<FILL_ME>"

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeLlama model')
parser.add_argument('--repo-id-or-model-path', type=str, default="codellama/CodeLlama-7b-hf",
help='The huggingface repo id for the CodeLlama to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="def print_hello_world():",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True)

# Load tokenizer
tokenizer = CodeLlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
prompt = CODELLAMA_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)
63 changes: 63 additions & 0 deletions python/llm/example/CPU/PyTorch-Models/Model/codellama/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# CodeLlama
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate CodeLlama models. For illustration purposes, we utilize the [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) as reference CodeLlama models.

## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a CodeLlama model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).

After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm

pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
```

### 2. Run
After setting up the Python environment, you could run the example by following steps.

#### 2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py --prompt 'def print_hello_world():'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.

#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.

E.g. on Linux,
```bash
# set BigDL-Nano env variables
source bigdl-nano-init

# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'def print_hello_world():'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.

#### 2.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:

- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the CodeLlama model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'codellama/CodeLlama-7b-hf'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'def print_hello_world():'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

#### 2.3 Sample Output
#### [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf)
```log
Inference time: xxxx s
-------------------- Output --------------------
def print_hello_world():
print("Hello World")
def print_hello_world_with_name(name):
print("Hello " + name)
```
61 changes: 61 additions & 0 deletions python/llm/example/CPU/PyTorch-Models/Model/codellama/generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse

from transformers import AutoModelForCausalLM, CodeLlamaTokenizer
from bigdl.llm import optimize_model

# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/docs/transformers/v4.34.1/model_doc/code_llama
CODELLAMA_PROMPT_FORMAT = "{prompt}\n<FILL_ME>"

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeLlama model')
parser.add_argument('--repo-id-or-model-path', type=str, default="codellama/CodeLlama-7b-hf",
help='The huggingface repo id for the CodeLlama to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="def print_hello_world():",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path

# Load model
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)

# With only one line to enable BigDL-LLM optimization on model
model = optimize_model(model)

# Load tokenizer
tokenizer = CodeLlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
prompt = CODELLAMA_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import intel_extension_for_pytorch as ipex
import time
import argparse

from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import CodeLlamaTokenizer

# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/docs/transformers/v4.34.1/model_doc/code_llama
CODELLAMA_PROMPT_FORMAT = "{prompt}\n<FILL_ME>"

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeLlama model')
parser.add_argument('--repo-id-or-model-path', type=str, default="codellama/CodeLlama-7b-hf",
help='The huggingface repo id for the CodeLlama to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="def print_hello_world():",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True,
use_cache=True)
model = model.to('xpu')

# Load tokenizer
tokenizer = CodeLlamaTokenizer.from_pretrained(model_path,
trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
prompt = CODELLAMA_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')

# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)

# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)
Loading

0 comments on commit 97a3895

Please sign in to comment.