This repository has been archived by the owner on Jul 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 303
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
116 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
import chainer | ||
from chainer.backends import cuda | ||
import chainer.functions as F | ||
from chainer import gradient_check | ||
from chainer import testing | ||
from chainer.testing import attr | ||
from chainer.testing import condition | ||
import numpy as np | ||
import unittest | ||
|
||
from chainercv import functions | ||
|
||
|
||
@testing.parameterize(*testing.product({ | ||
'spatial_scale': [0.6, 1.0, 2.0], | ||
})) | ||
class TestPSROIMaxPooling2D(unittest.TestCase): | ||
|
||
def setUp(self): | ||
self.N = 3 | ||
self.group_size = 2 | ||
self.out_c = 2 | ||
self.n_channels = self.group_size * self.group_size * self.out_c | ||
self.x = np.arange( | ||
self.N * self.n_channels * 10 * 12, | ||
dtype=np.float32).reshape((self.N, self.n_channels, 10, 12)) | ||
np.random.shuffle(self.x) | ||
self.x = 2 * self.x / self.x.size - 1 | ||
self.x = self.x.astype(np.float32) | ||
self.rois = np.array( | ||
[[0, 0, 7, 7], | ||
[1, 0, 5, 12], | ||
[0, 1, 10, 5], | ||
[3, 3, 4, 4]], | ||
dtype=np.float32 | ||
) | ||
self.roi_indices = np.array([0, 2, 1, 0], dtype=np.int32) | ||
self.n_roi = self.rois.shape[0] | ||
self.out_h, self.out_w = 4, 4 | ||
self.gy = np.random.uniform( | ||
-1, 1, (self.n_roi, self.out_c, self.out_h, self.out_w)) | ||
self.gy = self.gy.astype(np.float32) | ||
self.check_backward_options = {'atol': 5e-4, 'rtol': 5e-3} | ||
|
||
def check_forward(self, x_data, roi_data, roi_index_data): | ||
x = chainer.Variable(x_data) | ||
rois = chainer.Variable(roi_data) | ||
roi_indices = chainer.Variable(roi_index_data) | ||
y = functions.ps_roi_max_pooling_2d( | ||
x, rois, roi_indices, self.out_c, self.out_h, self.out_w, | ||
self.spatial_scale, self.group_size) | ||
self.assertEqual(y.data.dtype, np.float32) | ||
y_data = cuda.to_cpu(y.data) | ||
self.assertEqual( | ||
(self.n_roi, self.out_c, self.out_h, self.out_w), y_data.shape) | ||
|
||
@condition.retry(3) | ||
def test_forward_cpu(self): | ||
self.check_forward(self.x, self.rois, self.roi_indices) | ||
|
||
@attr.gpu | ||
@condition.retry(3) | ||
def test_forward_gpu(self): | ||
self.check_forward( | ||
cuda.to_gpu(self.x), cuda.to_gpu(self.rois), | ||
cuda.to_gpu(self.roi_indices)) | ||
|
||
def check_backward(self, x_data, roi_data, roi_index_data, y_grad_data): | ||
def f(x, rois, roi_indices): | ||
y = functions.ps_roi_max_pooling_2d( | ||
x, rois, roi_indices, self.out_c, self.out_h, self.out_w, | ||
self.spatial_scale, self.group_size) | ||
xp = cuda.get_array_module(y) | ||
y = F.where( | ||
xp.isinf(y.array), xp.zeros(y.shape, dtype=y.dtype), y) | ||
return y | ||
gradient_check.check_backward( | ||
f, (x_data, roi_data, roi_index_data), y_grad_data, | ||
no_grads=[False, True, True], **self.check_backward_options) | ||
|
||
@condition.retry(3) | ||
def test_backward_cpu(self): | ||
self.check_backward(self.x, self.rois, self.roi_indices, self.gy) | ||
|
||
@attr.gpu | ||
@condition.retry(3) | ||
def test_backward_gpu(self): | ||
self.check_backward( | ||
cuda.to_gpu(self.x), cuda.to_gpu(self.rois), | ||
cuda.to_gpu(self.roi_indices), cuda.to_gpu(self.gy)) | ||
|
||
def apply_backward(self, x_data, roi_data, roi_index_data, y_grad_data): | ||
x = chainer.Variable(x_data) | ||
rois = chainer.Variable(roi_data) | ||
roi_indices = chainer.Variable(roi_index_data) | ||
y = functions.ps_roi_max_pooling_2d( | ||
x, rois, roi_indices, self.out_c, self.out_h, self.out_w, | ||
self.spatial_scale, self.group_size) | ||
x.cleargrad() | ||
y.grad = y_grad_data | ||
y.backward() | ||
return x, y | ||
|
||
@attr.gpu | ||
@condition.retry(3) | ||
def test_consistency_with_gpu(self): | ||
x_cpu, y_cpu = self.apply_backward( | ||
self.x, self.rois, self.roi_indices, self.gy) | ||
x_gpu, y_gpu = self.apply_backward( | ||
cuda.to_gpu(self.x), cuda.to_gpu(self.rois), | ||
cuda.to_gpu(self.roi_indices), cuda.to_gpu(self.gy)) | ||
testing.assert_allclose(y_cpu.data, y_gpu.data) | ||
testing.assert_allclose(x_cpu.grad, x_gpu.grad) | ||
|
||
|
||
testing.run_module(__name__, __file__) |