-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 33c8f7f
Showing
32 changed files
with
1,390 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
^.*\.Rproj$ | ||
^\.Rproj\.user$ | ||
^LICENSE\.md$ | ||
^README\.Rmd$ | ||
^data-raw$ | ||
^_pkgdown\.yml$ | ||
^docs$ | ||
^pkgdown$ | ||
^\.github$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
*.html |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
# Workflow derived from https://github.com/r-lib/actions/tree/v2/examples | ||
# Need help debugging build failures? Start at https://github.com/r-lib/actions#where-to-find-help | ||
on: | ||
push: | ||
branches: [main, master] | ||
pull_request: | ||
branches: [main, master] | ||
release: | ||
types: [published] | ||
workflow_dispatch: | ||
|
||
name: pkgdown | ||
|
||
jobs: | ||
pkgdown: | ||
runs-on: ubuntu-latest | ||
# Only restrict concurrency for non-PR jobs | ||
concurrency: | ||
group: pkgdown-${{ github.event_name != 'pull_request' || github.run_id }} | ||
env: | ||
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }} | ||
permissions: | ||
contents: write | ||
steps: | ||
- uses: actions/checkout@v3 | ||
|
||
- uses: r-lib/actions/setup-pandoc@v2 | ||
|
||
- uses: r-lib/actions/setup-r@v2 | ||
with: | ||
use-public-rspm: true | ||
|
||
- uses: r-lib/actions/setup-r-dependencies@v2 | ||
with: | ||
extra-packages: any::pkgdown, local::. | ||
needs: website | ||
|
||
- name: Build site | ||
run: pkgdown::build_site_github_pages(new_process = FALSE, install = FALSE) | ||
shell: Rscript {0} | ||
|
||
- name: Deploy to GitHub pages 🚀 | ||
if: github.event_name != 'pull_request' | ||
uses: JamesIves/[email protected] | ||
with: | ||
clean: false | ||
branch: gh-pages | ||
folder: docs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
.Rproj.user | ||
.Rhistory | ||
.RData | ||
.Ruserdata | ||
docs | ||
inst/doc |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
Package: bspme | ||
Type: Package | ||
Title: Bayesian Spatial Measurement Error Models | ||
Version: 0.2.0 | ||
Authors@R: c(person("Changwoo", "Lee", role=c("aut", "cre"), email="[email protected]"), person("Elaine", "Symanski", role = c('aut')), person("Amal", "Rammah", role = c('aut')), person("Dong Hun", "Kang", role = c('aut')), person("Philip", "Hopke", role = c('aut')), person("Eun Sug", "Park", role = c("aut"))) | ||
Author: Changwoo Lee[aut, cre], Eun Sug Park[aut], Elaine Symanski[aut], Amal Rammah[aut], Dong Hun Kang[aut], Philip Hopke[aut] | ||
Maintainer: Changwoo Lee <[email protected]> | ||
Description: Functions for fitting Bayesian linear and genearlized linear models in presence of spatial measurement error of the covariates. | ||
License: MIT + file LICENSE | ||
Encoding: UTF-8 | ||
LazyData: true | ||
Roxygen: list(markdown = TRUE) | ||
RoxygenNote: 7.2.3 | ||
Imports: | ||
coda, | ||
fields, | ||
spam, | ||
spNNGP | ||
Depends: | ||
Matrix, | ||
R (>= 2.10) | ||
URL: https://changwoo-lee.github.io/bspme/ | ||
BugReports: https://github.com/changwoo-lee/bspme/issues | ||
Suggests: | ||
knitr, | ||
rmarkdown | ||
VignetteBuilder: knitr |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
# MIT License | ||
|
||
Copyright (c) 2023 bspme authors | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
# Generated by roxygen2: do not edit by hand | ||
|
||
export(blinreg_me) | ||
export(vecchia_cov) | ||
importFrom(Matrix,Diagonal) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
#' Bayesian normal linear regression models with correlated measurement errors | ||
#' | ||
#' This function implements the Bayesian normal linear regression model with correlated measurement error of covariate(s). | ||
#' Denote \eqn{Y_i} be a continuous response, \eqn{X_i} be a \eqn{q\times 1} covariate of \eqn{i}th observation that is subject to measurement error, | ||
#' and \eqn{Z_i} be a \eqn{p\times 1} covariate without measurement error. | ||
#' The likelihood model is Bayesian normal linear regression, | ||
#' \deqn{Y_i = \beta_0 + X_i^\top \beta_x + Z_i^\top \beta_z + \epsilon_i,\quad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2_Y), \quad i=1,\dots,n} | ||
#' and correlated measurement error of \eqn{X_i, i=1,\dots,n} is incorporated into the model as a multivariate normal prior. For example when \eqn{q=1}, we have \eqn{n-}dimensional multivariate normal prior | ||
#' \deqn{(X_1,\dots,X_n)\sim N_n(\mu_X, Q_X^{-1}).} | ||
#' Also, we consider semiconjugate priors for regression coefficients and noise variance; | ||
#' \deqn{\beta_0 \sim N(0, V_\beta), \quad \beta_{x,j} \stackrel{iid}{\sim} N(0, V_\beta), \quad \beta_{z,k} \stackrel{iid}{\sim} N(0, V_\beta), \quad \sigma_Y^2 \sim IG(a_Y, b_Y).} | ||
#' The function \code{blinreg_me()} implements the Gibbs sampler for posterior inference. Most importantly, it allows sparse matrix input for \eqn{Q_X} for scalable computation. | ||
#' | ||
#' @param Y n by 1 matrix, response | ||
#' @param X_mean n by 1 matrix or list of n by 1 matrices of length q, mean of X \eqn{\mu_X}. | ||
#' @param X_prec n by n matrix or list of n by n matrices of length q, precision matrix of X \eqn{Q_X}. Support sparse matrix format from Matrix package. | ||
#' @param Z n by p matrix, covariates without measurement error | ||
#' @param nburn integer, burn-in iteration | ||
#' @param nthin integer, thin-in rate | ||
#' @param nsave integer, number of posterior samples | ||
#' @param prior list of prior parameters, default is var_beta = 100,a_Y = 0.01, b_Y = 0.01 | ||
#' @param saveX logical, save X or not | ||
#' | ||
#' @return list of (1) posterior, the (nsave)x(q+p) matrix of posterior samples as a coda object, | ||
#' (2) cputime, cpu time taken in seconds, | ||
#' and optionally (3) X_save, posterior samples of X | ||
#' @export | ||
#' | ||
#' @examples | ||
#' | ||
#'\dontrun{ | ||
#' data(ozone) | ||
#' data(health_sim) | ||
#' library(bspme) | ||
#' data(ozone) | ||
#' data(health_sim) | ||
#' library(fields) | ||
#' # exposure mean and covariance at health subject locations with 06/18/1987 data (date id = 16) | ||
#' # using Gaussian process with prior mean zero and exponential covariance kernel | ||
#' # with fixed range 300 (in miles) and stdev 15 (in ppb) | ||
#' | ||
#' ozone16 = ozone[ozone$date_id==16,] | ||
#' | ||
#' Dxx = rdist.earth(cbind(ozone16$coords_lon, ozone16$coords_lat)) | ||
#' Dyy = rdist.earth(cbind(health_sim$coords_y_lon, health_sim$coords_y_lat)) | ||
#' Dxy = rdist.earth(cbind(ozone16$coords_lon, ozone16$coords_lat), | ||
#' cbind(health_sim$coords_y_lon, health_sim$coords_y_lat)) | ||
#' | ||
#' Kxx = Exponential(Dxx, range = 300, phi=15^2) | ||
#' Kyy = Exponential(Dyy, range = 300, phi=15^2) | ||
#' Kxy = Exponential(Dxy, range = 300, phi=15^2) | ||
#' | ||
#' X_mean = t(Kxy) %*% solve(Kxx, ozone16$ozone_ppb) | ||
#' X_cov = Kyy - t(Kxy) %*% solve(Kxx, Kxy) | ||
#' | ||
#' # visualize | ||
#' par(mfrow = c(1,3)) | ||
#' quilt.plot(cbind(ozone16$coords_lon, ozone16$coords_lat), | ||
#' ozone16$ozone_ppb, main = "ozone measurements"); US(add= T) | ||
#' | ||
#' quilt.plot(cbind(health_sim$coords_y_lon, health_sim$coords_y_lat), | ||
#' X_mean, main = "health subjects, mean of exposure"); US(add= T) | ||
#' points(cbind(ozone16$coords_lon, ozone16$coords_lat), pch = 17) | ||
#' | ||
#' quilt.plot(cbind(health_sim$coords_y_lon, health_sim$coords_y_lat), | ||
#' sqrt(diag(X_cov)), main = "health subjects, sd of exposure"); US(add= T) | ||
#' points(cbind(ozone16$coords_lon, ozone16$coords_lat), pch = 17) | ||
#' | ||
#' # vecchia approximation | ||
#' run_vecchia = vecchia_cov(X_cov, coords = cbind(health_sim$coords_y_lon, health_sim$coords_y_lat), | ||
#' n.neighbors = 10) | ||
#' Q_sparse = run_vecchia$Q | ||
#' run_vecchia$cputime | ||
#' | ||
#' # fit the model | ||
#' fit_me = blm_me(Y = health_sim$Y, | ||
#' X_mean = X_mean, | ||
#' X_prec = Q_sparse, # sparse precision matrix | ||
#' Z = health_sim$Z, | ||
#' nburn = 100, | ||
#' nsave = 1000, | ||
#' nthin = 1) | ||
#' fit_me$cputime | ||
#' summary(fit_me$posterior) | ||
#' library(bayesplot) | ||
#' bayesplot::mcmc_trace(fit_me$posterior) | ||
#' } | ||
#' | ||
blinreg_me <- function(Y, | ||
X_mean, | ||
X_prec, | ||
Z, | ||
nburn = 2000, | ||
nsave = 2000, | ||
nthin = 5, | ||
prior = NULL, | ||
saveX = F){ | ||
|
||
# prior input, default | ||
if(is.null(prior)){ | ||
prior = list(var_beta = 100,a_Y = 0.01, b_Y = 0.01) | ||
} | ||
var_beta = 100 | ||
a_Y = 0.01 | ||
b_Y = 0.01 | ||
|
||
n_y = length(Y) | ||
if(is.vector(Z)) Z = as.matrix(Z) | ||
|
||
if(!is.list(X_mean) & !is.list(X_prec)){ | ||
q = 1 | ||
X_mean = list(X_mean) | ||
X_prec = list(X_prec) | ||
}else if(is.list(X_mean) & is.list(X_prec)){ | ||
q = length(X_mean) | ||
if(length(X_prec)!=q) stop("list length does not match") | ||
}else{ | ||
stop("X_mean is not vector/matrix or list") | ||
} | ||
X_prec_X_mean = list() | ||
X_spamstruct = vector(mode = 'list', length = q) | ||
sparsealgo = rep(T,q) | ||
|
||
for(qq in 1:q){ | ||
X_prec_X_mean[[qq]] = as.numeric(X_prec[[qq]]%*%X_mean[[qq]]) | ||
|
||
if(!("sparseMatrix" %in% is(X_prec[[qq]]))){ | ||
print(paste0(qq,"th X_prec is not a sparse matrix! Using dense algorithm, which may very slow when n is large")) | ||
sparsealgo[qq] = F | ||
}else{ | ||
X_prec[[qq]] = as(as(X_prec[[qq]], "generalMatrix"), "CsparseMatrix") | ||
X_prec[[qq]] = spam::as.spam.dgCMatrix(X_prec[[qq]])# spam object | ||
X_spamstruct[[qq]] = spam::chol(X_prec[[qq]]) | ||
} | ||
} | ||
|
||
X = matrix(0, n_y, q) | ||
for(qq in 1:q) X[,qq] = X_mean[[q]] | ||
if(is.null(names(X_mean))){ | ||
colnames(X) = paste0("exposure.",1:q) | ||
}else{ | ||
colnames(X) = paste0("exposure.",names(X_mean)) | ||
} | ||
|
||
p = ncol(Z) | ||
if(is.null(colnames(Z))){ | ||
colnames(Z) = paste0("covariate.",1:p) | ||
}else{ | ||
colnames(Z) = paste0("covariate.",colnames(Z)) | ||
} | ||
df_temp = as.data.frame(cbind(X,Z)) | ||
D = model.matrix( ~ ., df_temp) | ||
|
||
|
||
# prior | ||
Sigma_beta = diag(var_beta, ncol(D))# 3 coefficients(beta0, beta1, betaz) | ||
Sigma_betainv = solve(Sigma_beta) | ||
|
||
# initialize | ||
sigma2_Y = 1 | ||
beta = rep(0.1, ncol(D)) | ||
|
||
sigma2_save = matrix(0, nsave, 1) | ||
colnames(sigma2_save) = "sigma2_Y" | ||
beta_save = matrix(0, nsave, ncol(D)) | ||
colnames(beta_save) <- colnames(D) | ||
if(saveX){ | ||
X_save = array(0, dim = c(nsave, n_y, q)) | ||
dimnames(X_save)[[3]] = names(X_mean) | ||
} | ||
|
||
YtY = crossprod(Y) | ||
#browser() | ||
# sampler starts | ||
isave = 0 | ||
isnegative = numeric(n_y) | ||
pb <- txtProgressBar(style=3) | ||
t_start = Sys.time() | ||
for(imcmc in 1:(nsave*nthin + nburn)){ | ||
setTxtProgressBar(pb, imcmc/(nsave*nthin + nburn)) | ||
# sample beta | ||
Vbetainv = Sigma_betainv + crossprod(D)/sigma2_Y | ||
betatilde = solve(Vbetainv,crossprod(D,Y)/sigma2_Y) | ||
beta = as.numeric(spam::rmvnorm.prec(1, mu = betatilde, Q = Vbetainv)) | ||
# sample sigma2_Y | ||
SSR = crossprod(Y - D%*%beta) | ||
sigma2_Y = 1/rgamma(1, a_Y + n_y/2, b_Y + SSR/2 ) | ||
|
||
for(qq in 1:q){ | ||
# 1st is intercept | ||
b_G = X_prec_X_mean[[qq]] + beta[qq + 1]/sigma2_Y*(Y-D[,-(qq+1)]%*%beta[-(qq+1)]) | ||
Qtilde = X_prec[[qq]] # dense or spam | ||
if(sparsealgo[qq]){ | ||
Qtilde = Qtilde + spam::diag.spam(beta[qq + 1]^2/sigma2_Y, n_y, n_y) | ||
}else{ | ||
diag(Qtilde) = diag(Qtilde) + beta[qq + 1]^2/sigma2_Y | ||
} | ||
Xstar = spam::rmvnorm.canonical(1, b = as.vector(b_G), | ||
Q = Qtilde,# dense or spam | ||
Rstruct = X_spamstruct[[qq]]) #browser() | ||
if(imcmc > nburn) isnegative = isnegative + (Xstar<0) | ||
D[,(qq+1)] = as.vector(Xstar) | ||
} | ||
|
||
|
||
if((imcmc > nburn)&(imcmc%%nthin==0)){ | ||
isave = isave + 1 | ||
sigma2_save[isave] = sigma2_Y | ||
beta_save[isave,] = beta | ||
if(saveX) X_save[isave,,] = D[,2:(q+1)] | ||
} | ||
} | ||
t_diff = difftime(Sys.time(), t_start, units = "secs") | ||
#print(paste0("Exposure components contains negative vaules total ",sum(isnegative)," times among (# exposures) x n_y x (MCMC iter after burnin) = ",q," x ",n_y," x ",nsave*nthin," instances")) | ||
out = list() | ||
out$posterior = cbind(beta_save, sigma2_save) | ||
out$posterior = coda::mcmc(out$posterior) | ||
out$cputime = t_diff | ||
if(saveX) out$X_save = X_save | ||
out | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
#' @keywords internal | ||
"_PACKAGE" | ||
|
||
## usethis namespace: start | ||
## usethis namespace: end | ||
NULL | ||
|
||
|
||
#' Dataset, ozone exposure | ||
#' | ||
#' This is a subset of "ozone2" dataset in fields package, only containing data from monitoring station with no missing values. | ||
#' The 8-hour average (surface) ozone (from 9AM-4PM) measured in parts per billion (PPB) for 67 sites in the midwestern US over the period June 3,1987 through August 31, 1987, 89 days. | ||
#' | ||
#' @format A data frame with 5963 rows and 6 variables: | ||
#' \describe{ | ||
#' \item{date_id}{integer, 1 corresponds to 06/03/1987 and 89 corresponds to 08/31/1987} | ||
#' \item{date}{POIXct, date} | ||
#' \item{station_id}{character, station id} | ||
#' \item{coords_lon}{numeric, longitude of monitoring station} | ||
#' \item{coords_lat}{numeric, latitude of monitoring station} | ||
#' \item{ozone_ppb}{8-hour average surface ozone from 9am-4pm in parts per billion (PPB)} | ||
#' } | ||
"ozone" | ||
|
||
|
||
#' Dataset, simulated health data | ||
#' | ||
#' Simulated health data based on ozone exposures on 06/18/1987. For details, see \code{health_sim.R}. | ||
#' | ||
#' @format A data frame with n = 3000 rows and 4 variables: | ||
#' \describe{ | ||
#' \item{Y}{n by 1 matrix, numeric, simulated continuous health outcome} | ||
#' \item{Ybinary}{n by 1 matrix, numeric, simulated binary health outcome} | ||
#' \item{coords_y_lon}{n by 1 matrix, numeric, simulated health subject longitude} | ||
#' \item{coords_y_lat}{n by 1 matrix, numeric, simulated health subject latitude} | ||
#' \item{Z}{n by 1 matrix, numeric, covariate} | ||
#' \item{X_true}{n by 1 matrix, numeric, true ozone exposure used for simulation} | ||
#' } | ||
"health_sim" |
Oops, something went wrong.