-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update sparse computation, add initial version of
BlockCSR
and `Blo…
…ckELL` (#81)
- Loading branch information
1 parent
edeed6c
commit f106941
Showing
9 changed files
with
823 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
from __future__ import annotations | ||
|
||
import functools | ||
from typing import Tuple | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
import numpy as np | ||
from jax.experimental import pallas as pl | ||
|
||
import brainunit as u | ||
from brainunit._base import Quantity | ||
from brainunit._sparse_base import SparseMatrix | ||
|
||
__all__ = [ | ||
'BlockCSR', | ||
] | ||
|
||
|
||
@jax.tree_util.register_pytree_node_class | ||
class BlockCSR(SparseMatrix): | ||
""" | ||
Unit-aware Block-CSR sparse matrix. | ||
""" | ||
data: jax.Array | Quantity # float32[n_blocks, *block_size] | ||
indptr: jax.Array # int32[n_block_rows + 1] | ||
indices: jax.Array # int32[n_blocks] | ||
shape: tuple[int, int] # (n_block_rows * block_size[0], n_block_cols * block_size[1]) | ||
|
||
ndim: int = property(lambda self: len(self.shape)) | ||
num_blocks = property(lambda self: self.data.shape[0]) | ||
block_size = property(lambda self: self.data.shape[1:]) | ||
dtype = property(lambda self: self.data.dtype) | ||
|
||
def __init__(self, args, *, shape: Tuple[int, int]): | ||
blocks, indptr, indices = args | ||
self.data = blocks | ||
self.indptr = indptr | ||
self.indices = indices | ||
super().__init__(args, shape=shape) | ||
|
||
def tree_flatten(self): | ||
return (self.data,), (self.indptr, self.indices, self.shape,) | ||
|
||
@classmethod | ||
def tree_unflatten(cls, data, xs): | ||
blocks, = xs | ||
indptr, indices, shape = data | ||
return BlockCSR((blocks, indptr, indices), shape=shape) | ||
|
||
def _validate(self): | ||
_nblocks, n, m = self.data.shape | ||
nrows = self.indptr.shape[0] - 1 | ||
assert self.indices.shape[0] == _nblocks | ||
assert len(self.shape) == 2 | ||
assert self.shape[0] == n * nrows | ||
assert self.shape[1] % m == 0 | ||
|
||
@jax.jit | ||
def todense(self) -> jax.Array: | ||
self._validate() | ||
return _sdd_todense(self) | ||
|
||
@classmethod | ||
def fromdense(cls, dense: jax.Array, *, block_size) -> 'BlockCSR': | ||
raise NotImplementedError | ||
|
||
def __matmul__(self, other) -> jax.Array: | ||
self._validate() | ||
return sdd_matmul(self, other) | ||
|
||
|
||
@jax.jit | ||
def _sdd_todense(mat: BlockCSR) -> jax.Array: | ||
_, n, m = mat.data.shape | ||
nrows = mat.shape[0] // n | ||
unit = u.get_unit(mat.data) | ||
blocks = u.get_mantissa(mat.data) | ||
|
||
def i_body(i_row, out): # each row | ||
def j_body(x): # each block in the row | ||
i_block, val = x | ||
i_col = mat.indices[i_block] | ||
val = jax.lax.dynamic_update_slice(val, blocks[i_block], (i_row * n, i_col * m)) | ||
return i_block + 1, val | ||
|
||
return jax.lax.while_loop( | ||
lambda x: x[0] < mat.indptr[i_row + 1], | ||
j_body, | ||
(mat.indptr[i_row], out) | ||
)[1] | ||
|
||
dense = jax.lax.fori_loop(0, nrows, i_body, jnp.zeros(mat.shape, mat.dtype)) | ||
return u.maybe_decimal(u.Quantity(dense, unit=unit)) | ||
|
||
|
||
def _check_shape_consistency(x, y): | ||
assert isinstance(y, jax.Array), f"Only support jax.Array. But got unsupported type {type(y)}" | ||
assert x.ndim == y.ndim == 2 | ||
assert x.shape[1] == y.shape[0], f"Dimension mismatch: {x.shape} @ {y.shape}" | ||
|
||
|
||
def _sdd_kernel( | ||
x_ref, # [n_blocks, bm, bn] | ||
indices_ref, # [n_block] | ||
indptr_ref, # [n_rows + 1] | ||
y_ref, # [n, k] | ||
o_ref, # [m, k] | ||
*, | ||
bm: int, | ||
bn: int, | ||
bk: int, | ||
): | ||
i_m = pl.program_id(axis=0) | ||
i_k = pl.program_id(axis=1) | ||
i_start = indptr_ref[i_m] | ||
i_end = indptr_ref[i_m + 1] | ||
|
||
def body(x): | ||
val, i_block = x | ||
i_x_col = indices_ref[i_block] | ||
block = pl.load(x_ref, (i_block, pl.dslice(None), pl.dslice(None))) # [bm, bn] | ||
chunk = pl.load(y_ref, (pl.dslice(i_x_col * bn, bn), pl.dslice(i_k * bk, bk))) # [bn, bk] | ||
return val + jnp.dot(block, chunk).astype(o_ref.dtype), i_block + 1 | ||
|
||
acc = jax.lax.while_loop( | ||
lambda x: x[1] < i_end, | ||
body, | ||
(jnp.zeros([bm, bk], dtype=o_ref.dtype), i_start) | ||
)[0] | ||
pl.store(o_ref, (pl.dslice(bm * i_m, bm), pl.dslice(bk * i_k, bk)), acc) # [bm, bk] | ||
|
||
|
||
@functools.partial(jax.jit, static_argnames=["debug", 'interpret', 'block_size']) | ||
def sdd_matmul( | ||
mat1: BlockCSR, | ||
mat2: jax.Array, | ||
*, | ||
debug: bool = False, | ||
interpret: bool = False, | ||
block_size: int = 256, | ||
) -> jax.Array: | ||
_check_shape_consistency(mat1, mat2) | ||
|
||
# shape and dtype | ||
m, n, k = mat1.shape[0], mat1.shape[1], mat2.shape[1] | ||
_, bm, bn = mat1.data.shape | ||
dtype = jnp.result_type(mat1.dtype, mat2.dtype) | ||
|
||
# kernel | ||
fn = pl.pallas_call( | ||
functools.partial(_sdd_kernel, bm=bm, bn=bn, bk=block_size), | ||
out_shape=jax.ShapeDtypeStruct(shape=(m, k), dtype=dtype), | ||
grid=(pl.cdiv(m, bm), pl.cdiv(k, block_size)), | ||
debug=debug, | ||
interpret=interpret | ||
) | ||
|
||
# call | ||
unita = u.get_unit(mat1.data) | ||
unitb = u.get_unit(mat2) | ||
blocks = u.get_mantissa(mat1.data) | ||
r = fn(blocks, mat1.indices, mat1.indptr, u.get_mantissa(mat2)) | ||
return u.maybe_decimal(u.Quantity(r, unit=unita * unitb)) | ||
|
||
|
||
@jax.jit | ||
def native_sdd_matmul( | ||
mat1: BlockCSR, | ||
mat2: jax.Array, | ||
): | ||
_check_shape_consistency(mat1, mat2) | ||
|
||
dtype = jnp.result_type(mat1.dtype, mat2.dtype) | ||
_, n, m = mat1.data.shape | ||
|
||
nrows = mat1.shape[0] // n | ||
|
||
def i_body(i): # each row | ||
def k_body(x): | ||
i_block, val = x | ||
i_col = mat1.indices[i_block] | ||
chunk = jax.lax.dynamic_slice(mat2, [i_col * m, 0], (m, mat2.shape[1])) # [m, mat2.shape[1]] | ||
block = blocks[i_block] | ||
return i_block + 1, val + block.dot(chunk) | ||
|
||
acc = jax.lax.while_loop( | ||
lambda x: x[0] < mat1.indptr[i + 1], | ||
k_body, | ||
(mat1.indptr[i], jnp.zeros((n, mat2.shape[1]), dtype=jnp.float32)) | ||
)[1] | ||
return acc.astype(dtype) | ||
|
||
unita = u.get_unit(mat1.data) | ||
unitb = u.get_unit(mat2) | ||
blocks = u.get_mantissa(mat1.data) | ||
mat2 = u.get_mantissa(mat2) | ||
|
||
out = jax.vmap(i_body)(jnp.arange(nrows)).reshape((mat1.shape[0], mat2.shape[1])) | ||
return u.maybe_decimal(u.Quantity(out, unit=unita * unitb)) | ||
|
||
|
||
def sample_sparse_matrix( | ||
m, n, bm, bn, *, | ||
sparse_prob=0.2, | ||
dtype=jnp.float32 | ||
) -> BlockCSR: | ||
num_rows = m // bm # number of rows in the Block-ELL matrix | ||
num_cols = n // bn # number of columns in the Block-ELL matrix | ||
blocks_per_row = np.random.binomial(num_cols, sparse_prob, | ||
size=[num_rows]) # [n_rows], number of data in each row | ||
num_blocks = blocks_per_row.sum() | ||
blocks = np.random.randn(num_blocks, bm, bn).astype(dtype) # [n_blocks, bm, bk], block values | ||
|
||
# [n_rows + 1], row pointers | ||
indptr = np.zeros(num_rows + 1, dtype=np.int32) # [n_rows + 1], row pointers | ||
indptr[1:] = np.cumsum(blocks_per_row) | ||
|
||
# [n_block], block indices | ||
indices = [] | ||
for i in range(num_rows): | ||
indices.extend(np.random.choice(num_cols, blocks_per_row[i], replace=False)) | ||
indices = jnp.array(indices) # [n_rows, max_num_blocks_per_row, 2], block indices | ||
|
||
return BlockCSR((jnp.asarray(blocks), jnp.asarray(indptr), jnp.asarray(indices)), shape=(m, n)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
from __future__ import annotations | ||
|
||
import functools | ||
import timeit | ||
|
||
import brainstate as bst | ||
import jax | ||
import jax.numpy as jnp | ||
|
||
from brainunit.sparse._block_csr import sample_sparse_matrix, sdd_matmul, native_sdd_matmul | ||
|
||
|
||
def main(dtype=jnp.float16, sparse_prob=0.2): | ||
bst.random.seed(1234) | ||
# data | ||
m, k, n = 4096, 4096, 4096 | ||
bm, bn, bk = 32, 32, 256 | ||
print(f"Matrix Shape: {m} x {k} x {n}, dtype: {dtype}, sparse_prob: {sparse_prob}") | ||
|
||
x = sample_sparse_matrix(m, k, bm, bn, sparse_prob=sparse_prob, dtype=dtype) | ||
x_dense = x.todense() | ||
y = bst.random.randn(k, n, dtype=dtype) | ||
|
||
# operations | ||
interpret = jax.devices()[0].platform == "cpu" | ||
# sdd_matmul(x, y, debug=False, block_size=bk, interpret=interpret).block_until_ready() | ||
native_matmul = jax.jit(native_sdd_matmul) | ||
pl_matmul = jax.jit(functools.partial(sdd_matmul, block_size=bk, interpret=interpret)) | ||
dense_matmul = jax.jit(jnp.matmul) | ||
native_grad = jax.jit(jax.grad(native_sdd_matmul, argnums=(0, 1))) | ||
pl_grad = jax.jit(jax.grad(functools.partial(sdd_matmul, block_size=bk, interpret=interpret), argnums=(0, 1))) | ||
dense_grad = jax.jit(jax.grad(jnp.matmul, argnums=(0, 1))) | ||
|
||
# compilation | ||
out_pl = pl_matmul(x, y) | ||
out_hlo = native_matmul(x, y) | ||
out_ref = dense_matmul(x_dense, y) | ||
# out_pl = pl_grad(x, y) | ||
# out_hlo = native_grad(x, y) | ||
# out_ref = dense_grad(x_dense, y) | ||
|
||
# print(jnp.max(jnp.abs(out_pl - out_ref))) | ||
# print(jnp.max(jnp.abs(out_pl - out_ref) / jnp.abs(out_pl))) | ||
# np.testing.assert_allclose(out_pl, out_ref, atol=0.04, rtol=0.04) | ||
# np.testing.assert_allclose(out_hlo, out_ref, atol=0.04, rtol=0.04) | ||
|
||
n_trial1, n_trial2 = (10, 2) if interpret else (1000, 20) | ||
duration = timeit.timeit(lambda: dense_matmul(x_dense, y).block_until_ready(), number=n_trial1) | ||
s1_forward = duration / n_trial1 * 1000 | ||
print(f"Dense Matmul, forward: {s1_forward:.2f}ms") | ||
# duration = timeit.timeit(lambda: jax.block_until_ready(dense_grad(x, y)), number=n_trial1) | ||
# s1_backward = duration / n_trial1 * 1000 | ||
# print(f"Dense Matmul, backward: {s1_backward:.2f}ms") | ||
|
||
duration = timeit.timeit(lambda: pl_matmul(x, y).block_until_ready(), number=n_trial1) | ||
s2_forward = duration / n_trial1 * 1000 | ||
print(f"Pallas Blocksparse Matmul, forward: {s2_forward:.2f}ms") | ||
# duration = timeit.timeit(lambda: jax.block_until_ready(pl_grad(x, y)), number=n_trial1) | ||
# s2_backward = duration / n_trial1 * 1000 | ||
# print(f"Pallas Blocksparse Matmul, backward: {s2_backward:.2f}ms") | ||
|
||
duration = timeit.timeit(lambda: native_matmul(x, y).block_until_ready(), number=n_trial2) | ||
s3_forward = duration / n_trial2 * 1000 | ||
print(f"HLO Blocksparse Matmul, forward: {s3_forward:.2f}ms") | ||
# duration = timeit.timeit(lambda: jax.block_until_ready(native_grad(x, y)), number=n_trial2) | ||
# s3_backward = duration / n_trial2 * 1000 | ||
# print(f"HLO Blocksparse Matmul, backward: {s3_backward:.2f}ms") | ||
|
||
print(f"Forward speedup: {s1_forward / s2_forward:.2f}x (Dense vs. Pallas), " | ||
f"{s3_forward / s2_forward:.2f}x (HLO vs. Pallas)") | ||
# print(f"Backward speedup: {s1_backward / s2_backward:.2f}x (Dense vs. Pallas), " | ||
# f"{s3_backward / s2_backward:.2f}x (HLO vs. Pallas)") | ||
print() | ||
|
||
|
||
if __name__ == "__main__": | ||
main(jnp.float32, 0.3) | ||
main(jnp.float32, 0.2) | ||
main(jnp.float32, 0.1) | ||
main(jnp.float32, 0.05) | ||
main(jnp.float16, 0.3) | ||
main(jnp.float16, 0.2) | ||
main(jnp.float16, 0.1) | ||
main(jnp.float16, 0.05) |
Oops, something went wrong.