-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdemo_d2hc.sh
executable file
·184 lines (136 loc) · 5.49 KB
/
demo_d2hc.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# author: Chen Min ([email protected])
# command: ./demo.sh example test0
# The DATASET_PATH must contain a folder "images" with all the input images.
# The DATASET_PATH must contain a folder "images" with all the input images.
starttime=$(date +%Y-%m-%d\ %H:%M:%S)
DATASET_PATH0=$1
DATANAME=$2
DATASET_PATH=$DATASET_PATH0/$DATANAME
RESULT_PATH=$DATASET_PATH/result
echo "${DATASET_PATH##*/} 1">> process.txt
#. /mnt/md0/anaconda3/etc/profile.d/conda.sh
#conda activate cascade_pl
#cd /mnt/md0/codes/mvs # cd to the code dir
echo "---resize input images---"
#image_dir:uploda img; image_resize_dir: resized img
#--img_scale: for example depth 500*1000, if img_scale=2, final image 1000*2000
python3 img_process.py --img_scale 2 --image_dir $DATASET_PATH/images/ --image_resize_dir $DATASET_PATH/colmap/images/
resize_img_time=`date +"%Y-%m-%d %H:%M:%S"`
echo "---feature_extractor---"
colmap feature_extractor \
--database_path $DATASET_PATH/database.db \
--image_path $DATASET_PATH/colmap/images \
--ImageReader.camera_model PINHOLE \
--SiftExtraction.max_image_size 5000
feature_extractor_time=`date +"%Y-%m-%d %H:%M:%S"`
echo "---exhaustive_matcher---"
colmap exhaustive_matcher \
--database_path $DATASET_PATH/database.db
exhaustive_matcher_time=`date +"%Y-%m-%d %H:%M:%S"`
mkdir $DATASET_PATH/colmap/sparse
echo "---mapper---"
colmap mapper \
--database_path $DATASET_PATH/database.db \
--image_path $DATASET_PATH/colmap/images \
--output_path $DATASET_PATH/colmap/sparse
mapper_time=`date +"%Y-%m-%d %H:%M:%S"`
echo "---bin to txt---"
colmap model_converter \
--input_path $DATASET_PATH/colmap/sparse/0 \
--output_path $DATASET_PATH/colmap/sparse \
--output_type TXT
bin2txt_time=`date +"%Y-%m-%d %H:%M:%S"`
echo "${DATASET_PATH##*/} 2">> process.txt
echo "---colmap to mvsnet input---"
python3 colmap2mvsnet.py --dense_folder $DATASET_PATH --max_d 512 \
--list_folder data/lists/testing_list.txt
colmap2mvsnet_time=`date +"%Y-%m-%d %H:%M:%S"`
echo "---D2HC---" #CUDA_VISIBLE_DEVICES=0
python3 D2HC-RMVSNet/eval.py \
--dataset=data_eval_transform_large \
--root_dir $DATASET_PATH0 \
--model=drmvsnet \
--syncbn=False \
--batch_size=1 \
--inverse_cost_volume \
--inverse_depth=True \
--origin_size=False \
--refine=False \
--save_depth=True \
--fusion=False \
--gn=True \
--return_depth=True \
--reg_loss=True \
--ngpu=1 \
--fea_net=FeatNet \
--cost_net=UNetConvLSTM \
--numdepth=512 \
--interval_scale=0.5 \
--max_h=512 \
--max_w=960 \
--image_scale=1.0 \
--img_scale=2 \
--pyramid=0 \
--testpath=$DATASET_PATH0 \
--testlist=data/lists/testing_list.txt \
--loadckpt=D2HC-RMVSNet/checkpoints/model_000004.ckpt \
--outdir=$RESULT_PATH
echo "---depth2dmap---"
python3 depth2dmap.py --root_dir $DATASET_PATH0 --img_scale 2 --depth_dir $RESULT_PATH/$DATANAME \
--list_dir data/lists/testing_list.txt
depth_inference_time=`date +"%Y-%m-%d %H:%M:%S"`
echo "---OpenMVS---"
cd $RESULT_PATH
echo "---InterfaceCOLMAP---"
/usr/local/bin/OpenMVS/InterfaceCOLMAP -i ../colmap -o scene.mvs
InterfaceCOLMAP_time=`date +"%Y-%m-%d %H:%M:%S"`
echo "---DensifyPointCloud---"
/usr/local/bin/OpenMVS/DensifyPointCloud scene.mvs #--resolution-level 1 #-v 4
DensifyPointCloud_time=`date +"%Y-%m-%d %H:%M:%S"`
echo "${DATASET_PATH##*/} 3">> process.txt
echo "---ReconstructMesh---"
/usr/local/bin/OpenMVS/ReconstructMesh scene_dense.mvs --smooth 5 --d 2
ReconstructMesh_time=`date +"%Y-%m-%d %H:%M:%S"`
echo "---RefineMesh---"
/usr/local/bin/OpenMVS/RefineMesh scene_dense_mesh.mvs --scales 1 --scale-step 1 --resolution-level 2
RefineMesh_time=`date +"%Y-%m-%d %H:%M:%S"`
echo "---TextureMesh---"
echo "${DATASET_PATH##*/} 4">> process.txt
/usr/local/bin/OpenMVS/TextureMesh scene_dense_mesh_refine.mvs --export-type obj --decimate 0.25 --cost-smoothness-ratio 5
TextureMesh_time=`date +"%Y-%m-%d %H:%M:%S"`
mkdir model
mv scene_dense_mesh_refine_texture.mtl model
mv scene_dense_mesh_refine_texture.obj model
mv scene_dense_mesh_refine_texture_material* model
/usr/local/bin/OpenMVS/TextureMesh scene_dense_mesh_refine.mvs --export-type obj --decimate 0.00390625 --cost-smoothness-ratio 5
TextureMesh_small_time=`date +"%Y-%m-%d %H:%M:%S"`
mkdir model_small
mv scene_dense_mesh_refine_texture.mtl model_small
mv scene_dense_mesh_refine_texture.obj model_small
mv scene_dense_mesh_refine_texture_material* model_small
mkdir openmvs
mv scene* openmvs
zip -r model.zip model
mv model.zip ../
rm -rf DensifyPointCloud*
rm -rf InterfaceCOLMAP*
rm -rf ReconstructMesh*
rm -rf RefineMesh*
rm -rf TextureMesh*
echo "${DATASET_PATH##*/} 5">> process.txt
Done_time=`date +"%Y-%m-%d %H:%M:%S"`
echo 'start time:' $starttime
echo 'resize_img finished:' $resize_img_time
echo 'feature_extract finished:' $feature_extractor_time
echo 'exhaustive_matcher finished:' $exhaustive_matcher_time
echo 'mapper finished:' $mapper_time
echo 'bin2txt finished:' $bin2txt_time
echo 'colmap2mvsnet finished:' $colmap2mvsnet_time
echo 'depth_inference finished:' $depth_inference_time
echo 'InterfaceCOLMAP finished:' $InterfaceCOLMAP_time
echo 'DensifyPointCloud finished:' $DensifyPointCloud_time
echo 'ReconstructMesh finished:' $ReconstructMesh_time
echo 'RefineMesh finished:' $RefineMesh_time
echo 'TextureMesh finished:' $TextureMesh_time
echo 'TextureMesh_small finished:' $TextureMesh_small_time
echo 'Done!:' $Done_time