Skip to content

A curated list of multiagent learning and related area resources.

Notifications You must be signed in to change notification settings

chuangyc/awesome-multiagent-learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 

Repository files navigation

Awesome Multiagent Learning: Awesome

A curated list of multiagent learning and related area resources. Inspired by MARL-Papers and awesome-activity-prediction. The papers are sorted by algorithms so far.

Contributing

Welcome to send me email([email protected]) or Pull Request to add links or remove your works.

Overview

Textbooks

  • Multi-Agent Machine Learning: A Reinforcement Approach [Website]
    • H. M. Schwartz, Wiley, 2014
  • 多智能體機器學習:強化學習方法
    • 霍華德 M.施瓦兹 著,連曉峰 譯(simplified chinese translation for the above book.)
  • Multiagent Systems [Website]
    • G. Weiss, MIT Press, 2013, 2nd edition
  • Graph Theoretic Methods in Multi-Agent Networks [Website]
    • M. Mesbahi and M. Egerstedt, Princeton University Press, 2010
  • Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations [Website]
    • Y. Shoham, K. Leyton-Brown, Cambridge University Press, 2009
  • Distributed Control of Robotic Networks [Website]
    • F. Bullo, J. Cortés, S. Martínez, Princeton University Press 2009
  • An Introduction to MultiAgent Systems [Website]
    • M. Wooldridge, John Wiley & Sons, 2009
  • Algebraic Graph Theory [Website]
    • C. Godsil and G. Royle, Springer, 2001
  • Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence [Website]
    • G. Weiss, The MIT Press, 2000

Tutorials

  • SJTU Multi-Agent Reinforcement Learning Tutorial [Website]
    • J. Wang, W. Zhang at SJTU 2018
  • Multiagent Learning: Foundations and Recent Trends [Website]
    • S. Albrecht, P. Stone, IJCAI2017
  • COMP310: Multi Agent System [Website]
    • T. Payne, 2017-2018
  • CompSci 285: Multi-Agent Systems [Website]
    • D. Parkes, 2013
  • CS 224M : Multi Agent Systems [Website]
    • Y. Shoham, 2013-14
  • Videos for "An Introduction to Multiagent Systems (Second Edition)" [Website]
    • M. Wooldridge, John Wiley & Sons, 2009

Review Papers

  • Multiagent learning: Basics, challenges, and prospects [pdf]
    • K. Tuyls, G. Weiss, AI Magazine2012
  • A comprehensive survey of multi-agent reinforcement learning [pdf] 8 L. Bus¸oniu, R. Babuska, and B. De Schutter, IIEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews2008
  • Foundations of Multi-Agent Learning [Website]
    • R. Vohra, M. Wellman, AIJ2007
  • Cooperative multi-agent learning: The state of the art. [pdf]
    • L. Panait and S. Luke, AAMAS2005
  • Learning in Multiagent Systems: An Introduction from a Game-Theoretic Perspective[pdf]
    • J. Vidal, AAMAS2002
  • Learning in multi-agent systems [Website]
    • E. Alonso, M. D’Inverno, D. Kudenko, KER2001

Research Papers

Deep Reinforcement Learning

  • QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning [arxiv]
    • T. Rashid, M. Samvelyan, C. Witt, ICML2018
  • Emergent Complexity via Multi-agent Competition [Paper][Code]
    • T. Bansal, J. Pachocki, S. Sidor, ICLR2018

Counterfactual Policy Gradient

  • Counterfactual Multi-Agent policy gradients [arxiv]
    • J. Foerster, G. Farquhar, S. Whiteson
  • Stabilising experience replay for deep Multi-Agent reinforcement learning [arxiv]
    • J. Foerster, N. Nardelli, S. Whiteson, ICML2017
  • Learning to communicate with deep multi-agent reinforcement learning [paper]
    • J. Foerster, I. Assael, S. Whiteson, NeuralIPS2016

LOLA

  • Learning with Opponent-Learning Awareness [paper]
    • J. Foerster, R. Chen, M. Shedivat, Shimon Whiteson, AAMAS2018

DRQN (Deep Recurrent Q Network)

  • Recurrent Deep Multiagent Q-Learning for Autonomous Brokers in Smart Grid [paper]
    • Y. Yang, J. Hao, G. Strbac, IJCAI2018
  • Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability [arxiv]
    • S. Omidshafiei, J. Pazis, J. Vian, ICML2017
  • Deep Recurrent Q-Learning for Partially Observable MDPs [arxiv]
    • M. Hausknecht, P. Stone, AAAI2015

DDPG(Deep Determinstic Policy Gradient)

  • Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments [Paper][Code1][Code2]
    • R. Lowe, Y. Wu, A. Tamar, NIPS2017

VDN (Value Decomposition Network)

  • Value-Decomposition Networks For Cooperative Multi-Agent Learning [arxiv]
    • P. Sunehag, G. Lever, T. Graepel, AAMAS2018

Q-Learning

Factorized Q-Learning

  • Factorized Q-Learning for Large-Scale Multi-Agent Systems [arxiv]
    • Y. Chen, M. Zhou, Y. Wen, AAAI2019

MFMARL

  • Mean Field Multi-Agent Reinforcement Learning [arxiv][COde]
    • Y. Yang, R. Luo, M. Li, ICML2018

Fuzzy-Q

  • Fuzzy Q-learning [website]
    • P. Glorennec, L. Jouffe, IFSC1997

Correlated-Q

  • Correlated Q-learning [pdf]
    • A. Greenwald, K. Hall, ICML2003

Nash-Q

  • Nash Q-learning for general-sum stochastic games [pdf]
    • J. Hu, M. Wellman, JMLR2003

Friend or Foe-Q

  • Friend-or-foe Q-learning in general-sum games [pdf]
    • M. Littman, ICML2001

Minimax-Q

  • Markov games as a framework for multi-agent reinforcement learning [pdf]
    • M. Littman, ICML1994

Joint action Learning

  • Reaching pareto-optimality in prisoner’s dilemma using conditional joint action learning [website]
    • D. Banerjee, S. Sen, AAMAS2007
  • The dynamics of reinforcement learning in cooperative multiagent systems [pdf]
    • C. Claus, C. Boutilier, AAAI1998

Policy Hill Climbing

  • Multiagent learning using a variable learning rate [pdf]
    • M. Bowling, M. Veloso, Artificial Intelligence2002

Learning Automata

Gradient Ascent

Platforms

Code for Starcraft: Brood War

Releases

No releases published

Packages

No packages published