The goal of this package is to represent a FrameNet lexicon in the NLTK format as well as to add new lexical units to it. You can represent a FrameNet in a different language or edit an existing FrameNet.
Python 3.6 was used to create this project. It might work with older versions of Python.
A number of external modules need to be installed, which are listed in requirements.txt. Depending on how you installed Python, you can probably install the requirements using one of following commands:
pip install -r requirements.txt
The English FrameNet corpus version 1.7 needs to be downloaded. You can use the following command.
bash install.sh
Function 1: initialize a new FrameNet lexicon
from FrameNetNLTK import initialize
from nltk.corpus import framenet as fn
initialize(folder='test_lexicon',
fn_en=fn,
verbose=2)
- folder: indicates where the lexicon will be stored on disk. The NLTK convention is to indicate the version in the folder name, e.g., dutch_framenet_v10.
- fn_en: result from calling 'from nltk.corpus import framenet as fn'
At the location of folder, an empty FrameNet lexicon will be created stripped from all LU information, but with the frame information intact.
Function 2: load the lexicon
from FrameNetNLTK import load
my_fn = load(folder='test_lexicon',
verbose=2)
You will notice that there is no LU information in the lexicon. We refer to the documentation for information about how to use the Python package.
Function 3: add an LU to a lexicalized frame in English FrameNet We refer to the file Phenomena for more information about how to represent Lexical Units.
from nltk.corpus import framenet as fn
from FrameNetNLTK import add_lu
lexemes = [{
'order' : '1',
'headword' : 'false',
'breakBefore' : 'false',
'POS' : 'N',
'name' : 'Californiër'
}]
add_lu(your_lexicon_folder='test_lexicon',
fn_en=fn,
lu_name="Californiër.n",
lexemes=lexemes,
definition='van Calfornië',
status='Created',
pos='N',
frame='People_by_origin',
agent='YOUR_NAME',
provenance='manual',
lu_type='singleton',
incorporated_fe="Origin",
verbose=2)
This will update the lexicon by adding a new LU to the frame People_by_origin. If the lemma and pos combination already exists for the chosen frame in the lexicon, it will not be added.
We can also add LUs consisting of more than one lexeme.
from nltk.corpus import framenet as fn
from FrameNetNLTK import add_lu
lexemes = [{
'order' : '1',
'headword' : 'false',
'breakBefore' : 'false',
'POS' : 'N',
'name' : 'senaat',
'incorporatedFE' : 'Function',
},
{
'order' : '2',
'headword' : 'false',
'breakBefore' : 'false',
'POS' : 'I',
'name' : 's',
},
{
'order': '3',
'headword': 'true',
'breakBefore': 'false',
'POS': 'N',
'name': 'verkiezing',
}
]
add_lu(your_lexicon_folder='test_lexicon',
fn_en=fn,
lu_name="presidentsverkiezing.n",
lexemes=lexemes,
definition='het proces van het kiezen van een senator.',
status='Created',
pos='N',
frame='Change_of_leadership',
agent='YOUR_NAME',
provenance='manual',
lu_type="endocentric compound",
incorporated_fe="Function",
verbose=2)
Please note that there are five possible values for lu_type:
- singleton
- idiom
- phrasal
- endocentric compound
- exocentric compound
We highlight that there is an optional lexeme attribute, which is lu_id. In the case of endocentric compounds, as shown above with presidentsverkiezing, we allow the user to link the specific lexemes to the LU that they refer to. For example, it is possible to first add an LU for "president" and for "verkiezing". When adding the entire compound "presidentsverkiezing", it is possible to indicate the LU that each lexeme refers to. We refer to test/add_compound_with_lu_id.py for an example.
Function 4: remove a lexical unit
from FrameNetNLTK import load, remove_lu, get_luid
fn = load('test_lexicon')
lu_id, reason = get_luid(my_fn=fn,
frame_label='People_by_origin',
lemma='Duitser',
pos='N')
remove_lu(your_lexicon_folder='test_lexicon',
lu_id=lu_id,
verbose=2)
This will remove all information relating to the lexical unit with identifier 1. You can use the nltk package to find the identiifer of a lexical unit that you want to remove. What if I want to edit? For now, this is not implemented. The easiest is to remove the LU and add it with the changes.
Function 5: query the lexicon
from FrameNetNLTK import load
my_fn = load(folder='test_lexicon')
for lu in my_fn.lus():
print(lu)
Function 6: Reference to other resources
The NLTK package is flexible in that it allows to add references to other resources
from nltk.corpus import framenet as fn
from FrameNetNLTK import add_lu
lexemes = [{
'order' : '1',
'headword' : 'false',
'breakBefore' : 'false',
'POS' : 'N',
'name' : 'Duitser'
}]
add_lu(your_lexicon_folder='test_lexicon',
fn_en=fn,
lu_name="Duitser.n",
lexemes=lexemes,
definition='uit Duitsland',
status='New',
pos='N',
frame='People_by_origin',
agent='YOUR_NAME',
provenance='manual',
lu_type="singleton",
incorporated_fe="Origin",
verbose=2)
Function 7: add a batch of LUs It is possible to provide a JSON consisting of LUs to be added.
from nltk.corpus import framenet as fn
from FrameNetNLTK import add_lus_from_json
import FrameNetNLTK
add_lus_from_json(your_lexicon_folder='test_lexicon',
fn_en=fn,
json_path='res/json/lus.json',
skos=FrameNetNLTK.skos,
verbose=2)
Please inspect res/json/lus.json for an example. Please note that the optional attributes must be present in each entry:
- "incorporated_fe" : null or a Frame Element label, e.g., "Origin".
- "timestamp" : null (current date) or a list [YEAR, MONTH, DAY], e.g., [2020, 6, 29]
Function 8: local http server It is possible to vizualize your FrameNet similar to how FrameNet visualizes it (frameIndex and luIndex).
cd test_lexicon
python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...
Point your browser to the URL shown in the terminal:
- click on luIndex.xml
- click on frameIndex.xml
Function 9: descriptive statistics The Python module stats_utils.py contains a number of function to compute descriptive statistics. We highlight the following function:
from FrameNetNLTK import load, get_stats_html
my_fn = load(folder='test_lexicon')
get_stats_html(your_fn=my_fn,
html_path='descriptive_statistics.html')
This will write an html file to disk containing the most important descriptive statistics about your FrameNet. Feel free to inspect the other functions in stats_utils.py for more functionality.
Function 10: convert to RDF
from FrameNetNLTK import load, convert_to_lemon
my_fn = load(folder='test_lexicon',
verbose=2)
convert_to_lemon(lemon=FrameNetNLTK.lemon,
premon_nt_path=FrameNetNLTK.premon_nt,
ontolex=FrameNetNLTK.ontolex,
fn_pos_to_lexinfo=FrameNetNLTK.fn_pos_to_lexinfo,
your_fn=my_fn,
namespace='http://rdf.cltl.nl/dfn/',
namespace_prefix='dfn',
language='nld',
major_version=0,
minor_version=1,
output_path='dfn.ttl',
verbose=2)
The result of this function call is that Dutch FrameNet version 0.1 is written to disk at dfn.ttl.
Function 11: Incorporating NAF files into the lexicon
import FrameNetNLTK
from nltk.corpus import framenet as fn
naf_path = 'test/test_naf_files/predicate_in_compound.naf'
corpus_name = 'HDD'
corpus_description = 'HistoricalDistanceData'
path_dfn_in_lemon = 'test/stats/dfn_0.1.ttl'
my_fn = load(folder='test_lexicon',
verbose=2)
add_annotations_from_naf_31(your_fn=my_fn,
path_to_your_fn_in_lemon=path_dfn_in_lemon,
fn_en=fn,
premon_nt=FrameNetNLTK.premon_nt,
corpus_name=corpus_name,
corpus_description=corpus_description,
naf_path=naf_path,
overwrite=True,
start_from_scratch=False,
verbose=5)
my_fn = load(folder='test_lexicon',
verbose=2)
for annotation in my_fn.annotations():
print(annotation)
This will enrich the fulltext folder of the lexicon with an additional xml file, containing your annotations. Please note that the Lemon version of your FrameNet is needed (see Function 10). This step is also very useful in order to enrich the lexicon with new LUs. If an annotation is created for which no LU existed, the LU name is CANDIDATE-TO-BE-ADDED.
The documentation can be found at doc/FrameNetNLTK.md.
We make use of pytest for automated testing. You can test the package by calling:
cd test
bash all_tests.sh
- Levi Remijnse ([email protected])
- Marten Postma
This project is licensed under the Apache 2.0 License - see the LICENSE.md file for details