Skip to content
This repository has been archived by the owner on Jan 27, 2021. It is now read-only.

cmarteepants/finding_donors

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Scientist ND Project: Finding Donors for CharityML

Install

This project requires Python 3.x and the following Python libraries installed:

Use the following git command to copy the project to your local machine:

git clone https://github.com/cmarteepants/finding_donors.git

You will also need to have jupyter installed to run and execute an iPython Notebook

To install the libraries, navigate to the top-level project directory finding_donors/ and run the following command:

pip install -r requirements.txt

Code

The main entrypoint to the code is the finding_donors.ipynb notebook file.

Run

In a terminal or command window, navigate to the top-level project directory finding_donors/ (that contains this README) and run one of the following commands:

ipython notebook finding_donors.ipynb

or

jupyter notebook finding_donors.ipynb

This will open the iPython Notebook software and project file in your browser.

Data

The modified census dataset consists of approximately 32,000 data points, with each datapoint having 13 features. This dataset is a modified version of the dataset published in the paper "Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid", by Ron Kohavi. You may find this paper online, with the original dataset hosted on UCI.

Features

  • age: Age
  • workclass: Working Class (Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked)
  • education_level: Level of Education (Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool)
  • education-num: Number of educational years completed
  • marital-status: Marital status (Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse)
  • occupation: Work Occupation (Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces)
  • relationship: Relationship Status (Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried)
  • race: Race (White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black)
  • sex: Sex (Female, Male)
  • capital-gain: Monetary Capital Gains
  • capital-loss: Monetary Capital Losses
  • hours-per-week: Average Hours Per Week Worked
  • native-country: Native Country (United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands)

Target Variable

  • income: Income Class (<=50K, >50K)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published