This is the official codes (TensorFlow2 version) for "SocialCircle: Learning the Angle-based Social Interaction Representation for Pedestrian Trajectory Prediction".
We also provide the corresponding PyTorch codes (beta version for now) in the TorchVersion(beta) branch. Please note that model weights that trained with different backends (TensorFlow2 or PyTorch) can not be used in the other version of codes. Weights released in this page are trained under TensorFlow2. For weights trained with PyTorch, please refer to this page.
2024.06.06 Update: The code repository for our subsequent work "SocialCircle+: Learning the Angle-based Conditioned Interaction Representation for Pedestrian Trajectory Prediction" is now available at SocialCirclePlus. If you are interested in our work, feel free to try it! It is used in exactly the same way as the SocialCircle repository, and is compatible with the pytorch version of SocialCircle model weights.
You can clone this repository by the following command:
git clone https://github.com/cocoon2wong/SocialCircle.git
Then, run the following command to initialize all submodules:
git submodule update --init --recursive
The codes are developed with Python 3.9.
Additional packages used are included in the requirements.txt
file.
{: .box-warning}
Warning: We recommend installing all required Python packages in a virtual environment (like the conda
environment).
Otherwise, there COULD be other problems due to the package version conflicts.
Run the following command to install the required packages in your Python environment:
pip install -r requirements.txt
{: .box-warning}
Warning: If you want to validate SocialCircle
models on these datasets, make sure you are getting this repository via git clone
and that all gitsubmodules
have been properly initialized via git submodule update --init --recursive
.
You can run the following commands to prepare dataset files that have been validated in our paper:
-
Run Python the script inner the
dataset_original
folder:cd dataset_original
-
For
ETH-UCY
andSDD
, runpython main_ethucysdd.py
-
For
NBA
ornuScenes
, you can download their original dataset files, put them into the given path listed withindataset_original/main_nba.py
ordataset_original/main_nuscenes.py
, then runpython main_nba.py python main_nuscenes.py
(You can also download the processed dataset files manually from here, and put them into
dataset_processed
anddataset_configs
folders.)
-
-
Back to the repo folder and create soft links:
cd .. ln -s dataset_original/dataset_processed ./ ln -s dataset_original/dataset_configs ./
Dataset Corrections:
The univ13
split (ETH-UCY) takes univ
and univ3
as test sets, and other sets {eth
, hotel
, unive
, zara1
, zara2
, zara3
} as training sets.
Differently, the univ
split only includes univ
for testing models.
Our reported results in this conference paper are tested under split univ
.
Following most current approaches, we have test them and report results with the new split univ13
in the corresponding journal-expanded paper SocialCircle+
(codes repo here, paper available on arXiv).
Correspondingly, some SocialCircle
results have been corrected, and please check them in the SocialCirclePlus
repo with the newly trained weights in the weights repo (postfixed with univ13
).
Click the following button to learn more about how to process these dataset files.
Before training SocialCircle
models on your own dataset, you should add your dataset information.
See this document for details.
We have provided our pre-trained model weights to help you quickly evaluate the SocialCircle
models' performance.
Click the following buttons to download our model weights.
We recommend that you download the weights and place them in the weights/SocialCircle
folder.
{: .box-warning} Warning: The TensorFlow 2 version of codes only support weights that trained with TensorFlow 2, and the PyTorch version of codes only support weights that trained with PyTorch. Please download the correct weights file or the program will not run correctly.
You can start evaluating models by
python main.py --sc SOME_MODEL_WEIGHTS
Here, SOME_MODEL_WEIGHTS
is the path of the weights folder, for example, weights/SocialCircle/evsc_P8_sdd
.
You can start training a SocialCircle
model via the following command:
python main.py --model MODEL_IDENTIFIER --split DATASET_SPLIT
Here, MODEL_IDENTIFIER
is the identifier of the model.
These identifiers are supported in current codes:
- The basic transformer model for trajectory prediction:
trans
(named theTransformer
in the paper);transsc
(SocialCircle variationTransformer-SC
).
- MSN (🔗homepage):
msna
(original model);msnsc
(SocialCircle variation).
- V^2-Net (🔗homepage):
va
(original model);vsc
(SocialCircle variation).
- E-V^2-Net (🔗homepage):
eva
(original model);evsc
(SocialCircle variation).
DATASET_SPLIT
is the identifier (i.e., the name of dataset's split files in dataset_configs
, for example eth
is the identifier of the split list in dataset_configs/ETH-UCY/eth.plist
) of the dataset or splits used for training.
It accepts:
- ETH-UCY: {
eth
,hotel
,univ
,zara1
,zara2
}; - SDD:
sdd
; - NBA:
nba50k
; - nuScenes: {
nuScenes_v1.0
,nuScenes_ov_v1.0
};
For example, you can start training the E-V^2-Net-SC
model by
python main.py --model evsc --split zara1
You can also specify other needed args, like the learning rate --lr
, batch size --batch_size
, etc.
See detailed args in the Args Used
Section.
In addition, the simplest way to reproduce our results is to copy all training args we used in the provided weights.
For example, you can start a training of E-V^2-Net-SC
on zara1
by:
python main.py --restore_args weights/SocialCircle/evsczara1
You can run the following script to learn how the proposed SocialCircle
works in an interactive way:
python scripts/socialcircle_toy_example.py
Set positions of the manual neighbor to see model's outputs like:
Please specify your customized args when training or testing your model in the following way:
python main.py --ARG_KEY1 ARG_VALUE2 --ARG_KEY2 ARG_VALUE2 -SHORT_ARG_KEY3 ARG_VALUE3 ...
where ARG_KEY
is the name of args, and ARG_VALUE
is the corresponding value.
All args and their usages are listed below.
About the argtype
:
- Args with argtype=
static
can not be changed once after training. When testing the model, the program will not parse these args to overwrite the saved values. - Args with argtype=
dynamic
can be changed anytime. The program will try to first parse inputs from the terminal and then try to load from the saved JSON file. - Args with argtype=
temporary
will not be saved into JSON files. The program will parse these args from the terminal at each time.
--K_train
: type=int
, argtype=static
. The number of multiple generations when training. This arg only works for multiple-generation models. The default value is10
.--K
: type=int
, argtype=dynamic
. The number of multiple generations when testing. This arg only works for multiple-generation models. The default value is20
.--anntype
: type=str
, argtype=static
. Model's predicted annotation type. Can be'coordinate'
or'boundingbox'
. The default value iscoordinate
.--batch_size
(short for-bs
): type=int
, argtype=dynamic
. Batch size when implementation. The default value is5000
.--compute_loss
: type=int
, argtype=temporary
. Controls whether compute losses when testing. The default value is0
.--dataset
: type=str
, argtype=static
. Name of the video dataset to train or evaluate. For example,'ETH-UCY'
or'SDD'
. NOTE: DO NOT set this argument manually. The default value isUnavailable
.--draw_distribution
(short for-dd
): type=int
, argtype=temporary
. Controls whether to draw distributions of predictions instead of points. Ifdraw_distribution == 0
, it will draw results as normal coordinates; Ifdraw_distribution == 1
, it will draw all results in the distribution way, and points from different time steps will be drawn with different colors. The default value is0
.--draw_exclude_type
(short for-det
): type=str
, argtype=temporary
. Draw visualized results of agents except for user-assigned types. If the assigned types are"Biker_Cart"
and thedraw_results
ordraw_videos
is not"null"
, it will draw results of all types of agents except "Biker" and "Cart". It supports partial match, and it is case-sensitive. The default value isnull
.--draw_extra_outputs
: type=int
, argtype=temporary
. Choose whether to draw (put text) extra model outputs on the visualized images. The default value is0
.--draw_index
: type=str
, argtype=temporary
. Indexes of test agents to visualize. Numbers are split with_
. For example,'123_456_789'
. The default value isall
.--draw_results
(short for-dr
): type=str
, argtype=temporary
. Controls whether to draw visualized results on video frames. Accept the name of one video clip. The codes will first try to load the video file according to the path saved in theplist
file (saved indataset_configs
folder), and if it loads successfully it will draw the results on that video, otherwise it will draw results on a blank canvas. Note thattest_mode
will be set to'one'
andforce_split
will be set todraw_results
ifdraw_results != 'null'
. The default value isnull
.--draw_videos
: type=str
, argtype=temporary
. Controls whether draw visualized results on video frames and save as images. Accept the name of one video clip. The codes will first try to load the video according to the path saved in theplist
file, and if successful it will draw the visualization on the video, otherwise it will draw on a blank canvas. Note thattest_mode
will be set to'one'
andforce_split
will be set todraw_videos
ifdraw_videos != 'null'
. The default value isnull
.--epochs
: type=int
, argtype=static
. Maximum training epochs. The default value is500
.--experimental
: type=bool
, argtype=temporary
. NOTE: It is only used for code test. The default value isFalse
.--force_anntype
: type=str
, argtype=temporary
. Assign the prediction type. It is now only used for silverballers models that are trained with annotation typecoordinate
but want to test on datasets with annotation typeboundingbox
. The default value isnull
.--force_clip
: type=str
, argtype=temporary
. Force test video clip (ignore the train/test split). It only works whentest_mode
has been set toone
. The default value isnull
.--force_dataset
: type=str
, argtype=temporary
. Force test dataset (ignore the train/test split). It only works whentest_mode
has been set toone
. The default value isnull
.--force_split
: type=str
, argtype=temporary
. Force test dataset (ignore the train/test split). It only works whentest_mode
has been set toone
. The default value isnull
.--gpu
: type=str
, argtype=temporary
. Speed up training or test if you have at least one NVidia GPU. If you have no GPUs or want to run the code on your CPU, please set it to-1
. NOTE: It only supports training or testing on one GPU. The default value is0
.--interval
: type=float
, argtype=static
. Time interval of each sampled trajectory point. The default value is0.4
.--load
(short for-l
): type=str
, argtype=temporary
. Folder to load model (to test). If set tonull
, the training manager will start training new models according to other given args. The default value isnull
.--log_dir
: type=str
, argtype=static
. Folder to save training logs and model weights. Logs will save atargs.save_base_dir/current_model
. DO NOT change this arg manually. (You can still change the path by passing thesave_base_dir
arg.) The default value isUnavailable
.--lr
(short for-lr
): type=float
, argtype=static
. Learning rate. The default value is0.001
.--max_agents
: type=int
, argtype=static
. Max number of agents to predict in one frame. It only works whenmodel_type == 'frame-based'
. The default value is50
.--model_name
: type=str
, argtype=static
. Customized model name. The default value ismodel
.--model_type
: type=str
, argtype=static
. Model type, canbe'agent-based'
or'frame-based'
. The default value isagent-based
.--model
: type=str
, argtype=static
. The model type used to train or test. The default value isnone
.--obs_frames
(short for-obs
): type=int
, argtype=static
. Observation frames for prediction. The default value is8
.--only_process_trajectory
: type=int
, argtype=static
. (Pre/post-process Arg) Controls whether to process non-trajectory model inputs or not. The default value is0
.--pmove
: type=int
, argtype=static
. (Pre/post-process Arg) Index of the reference point when moving trajectories. The default value is-1
.--pred_frames
(short for-pred
): type=int
, argtype=static
. Prediction frames. The default value is12
.--restore_args
: type=str
, argtype=temporary
. Path to restore the reference args before training. It will not restore any args ifargs.restore_args == 'null'
. The default value isnull
.--restore
: type=str
, argtype=temporary
. Path to restore the pre-trained weights before training. It will not restore any weights ifargs.restore == 'null'
. The default value isnull
.--save_base_dir
: type=str
, argtype=static
. Base folder to save all running logs. The default value is./logs
.--split
(short for-s
): type=str
, argtype=static
. The dataset split that used to train and evaluate. The default value iszara1
.--start_test_percent
: type=float
, argtype=static
. Set when (at which epoch) to start validation during training. The range of this arg should be0 <= x <= 1
. Validation may start at epochargs.epochs * args.start_test_percent
. The default value is0.0
.--step
: type=float
, argtype=dynamic
. Frame interval for sampling training data. The default value is1.0
.--test_mode
: type=str
, argtype=temporary
. Test settings. It can be'one'
,'all'
, or'mix'
. When setting it toone
, it will test the model on theargs.force_split
only; When setting it toall
, it will test on each of the test datasets inargs.split
; When setting it tomix
, it will test on all test datasets inargs.split
together. The default value ismix
.--test_step
: type=int
, argtype=static
. Epoch interval to run validation during training. The default value is1
.--update_saved_args
: type=int
, argtype=temporary
. Choose whether to update (overwrite) the saved arg files or not. The default value is0
.--use_seg_maps
: type=int
, argtype=dynamic
. Controls whether to use segmentation maps instead of the calculated trajectory maps. The default value is0
.--verbose
(short for-v
): type=int
, argtype=temporary
. Controls if print verbose logs and outputs to the terminal. The default value is0
.
--Kc
: type=int
, argtype=static
. The number of style channels inAgent
model. The default value is20
.--T
(short for-T
): type=str
, argtype=static
. Type of transformations used when encoding or decoding trajectories. It could be: -none
: no transformations -fft
: fast Fourier transform -fft2d
: 2D fast Fourier transform -haar
: haar wavelet transform -db2
: DB2 wavelet transform The default value isfft
.--depth
: type=int
, argtype=static
. Depth of the random noise vector. The default value is16
.--deterministic
: type=int
, argtype=static
. Controls if predict trajectories in the deterministic way. The default value is0
.--feature_dim
: type=int
, argtype=static
. Feature dimensions that are used in most layers. The default value is128
.--key_points
: type=str
, argtype=static
. A list of key time steps to be predicted in the agent model. For example,'0_6_11'
. The default value is0_6_11
.--loss
: type=str
, argtype=dynamic
. Loss used to train agent models. Canbe'avgkey'
or'keyl2'
(default). The default value iskeyl2
.--preprocess
: type=str
, argtype=static
. Controls whether to run any pre-process before the model inference. It accepts a 3-bit-like string value (like'111'
): - The first bit:MOVE
trajectories to (0, 0); - The second bit: re-SCALE
trajectories; - The third bit:ROTATE
trajectories. The default value is100
.
--Kc
: type=int
, argtype=static
. The number of style channels inAgent
model. The default value is20
.--T
(short for-T
): type=str
, argtype=static
. Type of transformations used when encoding or decoding trajectories. It could be: -none
: no transformations -fft
: fast Fourier transform -fft2d
: 2D fast Fourier transform -haar
: haar wavelet transform -db2
: DB2 wavelet transform The default value isfft
.--feature_dim
: type=int
, argtype=static
. Feature dimensions that are used in most layers. The default value is128
.--key_points
: type=str
, argtype=static
. A list of key time steps to be predicted in the agent model. For example,'0_6_11'
. The default value is0_6_11
.--points
: type=int
, argtype=static
. The number of keypoints accepted in the handler model. The default value is1
.--preprocess
: type=str
, argtype=static
. Controls whether to run any pre-process before the model inference. It accepts a 3-bit-like string value (like'111'
): - The first bit:MOVE
trajectories to (0, 0); - The second bit: re-SCALE
trajectories; - The third bit:ROTATE
trajectories. The default value is100
.
--channel
(short for-c
): type=int
, argtype=temporary
. Specify the k-th channel of the model output. Ifchannel == -1
, it outputs all channels' predictions. The default value is-1
.--down_sampling_rate
: type=float
, argtype=temporary
. Down sampling rate to sample trajectories from all N = K*Kc trajectories. The default value is1.0
.--loada
(short for-la
): type=str
, argtype=temporary
. Path to load the first-stage agent model. The default value isnull
.--loadb
(short for-lb
): type=str
, argtype=temporary
. Path to load the second-stage handler model. The default value isnull
.--pick_trajectories
(short for-p
): type=float
, argtype=temporary
. Calculates the sum of the context map values of the predicted trajectories and picks the top n (percentage) best predictions. This parameter is only valid when the model's input containsMAPS
andMAP_PARAS
. The default value is1.0
.
--Ts
(short for-Ts
): type=str
, argtype=static
. The transformation on SocialCircle. It could be: -none
: no transformations -fft
: fast Fourier transform -haar
: haar wavelet transform -db2
: DB2 wavelet transform The default value isnone
.--partitions
: type=int
, argtype=static
. Partitions in the SocialCircle. Set it to-1
to adapt to different observation/prediction length settings. The default value is-1
.--rel_speed
: type=int
, argtype=static
. Choose whether to use the relative speed or the absolute speed as the speed factor in the SocialCircle. (Default to theabsolute speed
) The default value is0
.--use_direction
: type=int
, argtype=static
. Choose whether to use the direction factor in the SocialCircle. The default value is1
.--use_distance
: type=int
, argtype=static
. Choose whether to use the distance factor in the SocialCircle. The default value is1
.--use_move_direction
: type=int
, argtype=static
. Choose whether to use the move direction factor in the SocialCircle. The default value is0
.--use_velocity
: type=int
, argtype=static
. Choose whether to use the velocity factor in the SocialCircle. The default value is1
.
Conghao Wong (@cocoon2wong): [email protected]
Beihao Xia (@NorthOcean): [email protected]
Ziqian Zou (@LivepoolQ): [email protected]