Skip to content
This repository has been archived by the owner on Oct 14, 2020. It is now read-only.
/ rio-tiler-crs Public archive

A rio-tiler plugin to create tiles using TMS (WebMercator or others)

License

Notifications You must be signed in to change notification settings

cogeotiff/rio-tiler-crs

Repository files navigation

rio-tiler-crs

⚠️ The features provided by this plugin have been integrated in rio-tiler >=2.0.0b17

rio-tiler

A rio-tiler plugin to create tiles in different projection

Test Coverage Package version Downloads Downloads

Install

$ pip install pip -U
$ pip install rio-tiler-crs

# Or using source

$ pip install git+http://github.com/cogeotiff/rio-tiler-crs

How To

rio-tiler-crs uses morecantile to define the custom tiling grid schema.

  1. Define grid system
import morecantile
from rasterio.crs import CRS

# Use default TMS
tms = morecantile.tms.get("WorldCRS84Quad")

# or create a custom TMS
crs = CRS.from_epsg(3031)  # Morecantile TileMatrixSet uses Rasterio CRS object
extent = [-948.75, -543592.47, 5817.41, -3333128.95]  # From https:///epsg.io/3031
tms = morecantile.TileMatrixSet.custom(extent, crs)
  1. read tile
from rio_tiler_crs import COGReader

# Read tile x=10, y=10, z=4
with COGReader("myfile.tif", tms=tms) as cog:
    tile, mask = cog.tile( 10, 10, 4)

API

class COGReader:
    """
    Cloud Optimized GeoTIFF Reader.

    Examples
    --------
    with CogeoReader(src_path) as cog:
        cog.tile(...)

    with rasterio.open(src_path) as src_dst:
        with WarpedVRT(src_dst, ...) as vrt_dst:
            with CogeoReader(None, dataset=vrt_dst) as cog:
                cog.tile(...)

    with rasterio.open(src_path) as src_dst:
        with CogeoReader(None, dataset=src_dst) as cog:
            cog.tile(...)

    Attributes
    ----------
    filepath: str
        Cloud Optimized GeoTIFF path.
    dataset: rasterio.DatasetReader, optional
        Rasterio dataset.
    tms: morecantile.TileMatrixSet, optional
        TileMatrixSet to use, default is WebMercatorQuad.

    Properties
    ----------
    minzoom: int
        COG minimum zoom level in TMS projection.
    maxzoom: int
        COG maximum zoom level in TMS projection.
    bounds: tuple[float]
        COG bounds in WGS84 crs.
    center: tuple[float, float, int]
        COG center + minzoom
    colormap: dict
        COG internal colormap.

    Methods
    -------
    tile(0, 0, 0, indexes=(1,2,3), expression="�B1/B2", tilesize=512, resampling_methods="nearest")
        Read a map tile from the COG.
    part((0,10,0,10), indexes=(1,2,3,), expression="�B1/B20", max_size=1024)
        Read part of the COG.
    preview(max_size=1024)
        Read preview of the COG.
    point((10, 10), indexes=1)
        Read a point value from the COG.
    info()
        General information about the COG (datatype, indexes, ...)
    stats(pmin=5, pmax=95)
        Get Raster statistics.
    meta(pmin=5, pmax=95)
        Get info + raster statistics

    """

Properties

  • dataset: Return the rasterio dataset
  • colormap: Return the dataset's internal colormap
  • minzoom: Return minimum TMS Zoom
  • maxzoom: Return maximum TMS Zoom
  • bounds: Return the dataset bounds in WGS84
  • center: Return the center of the dataset + minzoom
  • spatial_info: Return the bounds, center and zoom infos

Methods

  • tile(): Read map tile from a raster
tms = morecantile.tms.get("WorldCRS84Quad")
with COGReader("myfile.tif", tms=tms) as cog:
    tile, mask = cog.tile(1, 2, 3, tilesize=256)

# With indexes
with COGReader("myfile.tif", tms=tms) as cog:
    tile, mask = cog.tile(1, 2, 3, tilesize=256, indexes=1)

# With expression
with COGReader("myfile.tif", tms=tms) as cog:
    tile, mask = cog.tile(1, 2, 3, tilesize=256, expression="B1/B2")
  • part(): Read part of a raster

Note: tms has no effect on part read.

tms = morecantile.tms.get("WorldCRS84Quad")
with COGReader("myfile.tif", tms=tms) as cog:
    data, mask = cog.part((10, 10, 20, 20))

# Limit output size (default is set to 1024)
with COGReader("myfile.tif", tms=tms) as cog:
    data, mask = cog.part((10, 10, 20, 20), max_size=2000)

# Read high resolution
with COGReader("myfile.tif", tms=tms) as cog:
    data, mask = cog.part((10, 10, 20, 20), max_size=None)

# With indexes
with COGReader("myfile.tif", tms=tms) as cog:
     data, mask = cog.part((10, 10, 20, 20), indexes=1)

# With expression
with COGReader("myfile.tif", tms=tms) as cog:
    data, mask = cog.part((10, 10, 20, 20), expression="B1/B2")
  • preview(): Read a preview of a raster

Note: tms has no effect on part read.

with COGReader("myfile.tif") as cog:
    data, mask = cog.preview()

# With indexes
with COGReader("myfile.tif") as cog:
    data, mask = cog.preview(indexes=1)

# With expression
with COGReader("myfile.tif") as cog:
    data, mask = cog.preview(expression="B1+2,B1*4")
  • point(): Read point value of a raster

Note: tms has no effect on part read.

with COGReader("myfile.tif") as cog:
    print(cog.point(-100, 25))

# With indexes
with COGReader("myfile.tif") as cog:
    print(cog.point(-100, 25, indexes=1))
[1]

# With expression
with COGReader("myfile.tif") as cog:
    print(cog.point(-100, 25, expression="B1+2,B1*4"))
[3, 4]
  • info: Return simple metadata about the dataset
with COGReader("myfile.tif") as cog:
    print(cog.info())
{
    "bounds": [-119.05915661478785, 13.102845359730287, -84.91821332299578, 33.995073647795806],
    "center": [-101.98868496889182, 23.548959503763047, 3],
    "minzoom": 3,
    "maxzoom": 12,
    "band_metadata": [[1, {}]],
    "band_descriptions": [[1,"band1"]],
    "dtype": "int8",
    "colorinterp": ["palette"],
    "nodata_type": "Nodata",
    "colormap": {
        "0": [0, 0, 0, 0],
        "1": [0, 61, 0, 255],
        ...
    }
}
  • stats(): Return image statistics (Min/Max/Stdev)

Note: tms has no effect on stats.

with COGReader("myfile.tif") as cog:
    print(cog.stats())
{
    "1": {
        "pc": [1, 16],
        "min": 1,
        "max": 18,
        "std": 4.069636227214257,
        "histogram": [
            [...],
            [...]
        ]
    }
}
  • metadata(): Return COG info + statistics
with COGReader("myfile.tif") as cog:
    print(cog.metadata())
{
    "bounds": [-119.05915661478785, 13.102845359730287, -84.91821332299578, 33.995073647795806],
    "center": [-101.98868496889182, 23.548959503763047, 3],
    "minzoom": 3,
    "maxzoom": 12,
    "band_metadata": [[1, {}]],
    "band_descriptions": [[1,"band1"]],
    "dtype": "int8",
    "colorinterp": ["palette"],
    "nodata_type": "Nodata",
    "colormap": {
        "0": [0, 0, 0, 0],
        "1": [0, 61, 0, 255],
        ...
    }
    "statistics" : {
        1: {
            "pc": [1, 16],
            "min": 1,
            "max": 18,
            "std": 4.069636227214257,
            "histogram": [
                [...],
                [...]
            ]
        }
    }
}

API - STAC

Previously in its own module stac-tiler, STACReader has been moved in rio-tiler-crs.

from rio_tiler_crs import STACReader

with STACReader("stac.json") as stac:
    tile, mask = stac.tile(1, 2, 3, tilesize=256, assets=["red", "green"])
class STACReader:
    """
    STAC + Cloud Optimized GeoTIFF Reader.

    Examples
    --------
    with STACReader(stac_path) as stac:
        stac.tile(...)

    my_stac = {
        "type": "Feature",
        "stac_version": "1.0.0",
        ...
    }
    with STACReader(None, item=my_stac) as stac:
        stac.tile(...)

    Attributes
    ----------
    filepath: str
        STAC Item path, URL or S3 URL.
    item: Dict, optional
        STAC Item dict.
    tms: morecantile.TileMatrixSet, optional
        TileMatrixSet to use, default is WebMercatorQuad.
    minzoom: int, optional
        Set minzoom for the tiles.
    minzoom: int, optional
        Set maxzoom for the tiles.
    include_assets: Set, optional
        Only accept some assets.
    exclude_assets: Set, optional
        Exclude some assets.
    include_asset_types: Set, optional
        Only include some assets base on their type
    include_asset_types: Set, optional
        Exclude some assets base on their type

    Properties
    ----------
    bounds: tuple[float]
        STAC bounds in WGS84 crs.
    center: tuple[float, float, int]
        STAC item center + minzoom

    Methods
    -------
    tile(0, 0, 0, assets="B01", expression="�B01/B02")
        Read a map tile from the COG.
    part((0,10,0,10), assets="B01", expression="�B1/B20", max_size=1024)
        Read part of the COG.
    preview(assets="B01", max_size=1024)
        Read preview of the COG.
    point((10, 10), assets="B01")
        Read a point value from the COG.
    stats(assets="B01", pmin=5, pmax=95)
        Get Raster statistics.
    info(assets="B01")
        Get Assets raster info.
    metadata(assets="B01", pmin=5, pmax=95)
        info + stats

    """
  • tile(): Read map tile from STAC assets
with STACReader("stac.json") as stac:
    tile, mask = stac.tile(1, 2, 3, tilesize=256, assets=["red", "green"])

# With expression
with STACReader("stac.json") as stac:
    tile, mask = cog.tile(1, 2, 3, tilesize=256, expression="red/green")
  • part(): Read part of STAC assets
with STACReader("stac.json") as stac:
    data, mask = stac.part((10, 10, 20, 20), assets=["red", "green"])

# Limit output size (default is set to 1024)
with STACReader("stac.json") as stac:
    data, mask = stac.part((10, 10, 20, 20), max_size=2000, assets=["red", "green"])

# Read high resolution
with STACReader("stac.json") as stac:
    data, mask = stac.part((10, 10, 20, 20), max_size=None, assets=["red", "green"])

# With expression
with STACReader("stac.json") as stac:
    data, mask = stac.part((10, 10, 20, 20), expression="red/green")
  • preview(): Read a preview of STAC assets
with STACReader("stac.json") as stac:
    data, mask = stac.preview(assets=["red", "green"])

# With expression
with STACReader("stac.json") as stac:
    data, mask = stac.preview(expression="red/green")
  • point(): Read point value of STAC assets
with STACReader("stac.json") as stac:
    pts = stac.point(-100, 25, assets=["red", "green"])


# With expression
with STACReader("stac.json") as stac:
    pts = stac.point(-100, 25, expression="red/green")
  • info(): Return simple metadata for STAC assets
with STACReader("stac.json") as stac:
    info = stac.info("B01")
{
    "B01": {
        "bounds": [23.10607624352815, 31.50517374437416, 24.296464503939944, 32.51933487169619],
        "center": [23.701270373734047, 32.012254308035175, 8],
        "minzoom": 8,
        "maxzoom": 11,
        "band_metadata": [[1, {}]],
        "band_descriptions": [[1, "band1"]],
        "dtype": "uint16",
        "colorinterp": ["gray"],
        "nodata_type": "Nodata"
    }
}
  • stats(): Return statistics for STAC assets (Min/Max/Stdev)
with STACReader("stac.json") as stac:
    print(stac.stats(["B01"]))
{
    "B01": {
        "1": {
            "pc": [
                324,
                5046
            ],
            "min": 133,
            "max": 8582,
            "std": 1230.6977195618235,
            "histogram": [
                [
                    199042, 178438, 188457, 118369, 57544, 20622, 9275, 2885, 761, 146
                ],
                [
                    133, 977.9, 1822.8, 2667.7, 3512.6, 4357.5, 5202.4, 6047.3, 6892.2, 7737.099999999999, 8582
                ]
            ]
        }
    }
}
  • metadata(): Return info and statistics for STAC assets
with STACReader("stac.json") as stac:
    print(stac.metadata(["B01"], pmin=5, pmax=95))
{
    "B01": {
        "bounds": [23.10607624352815, 31.50517374437416, 24.296464503939944, 32.51933487169619],
        "center": [23.701270373734047, 32.012254308035175, 8],
        "minzoom": 8,
        "maxzoom": 11,
        "band_metadata": [[1, {}]],
        "band_descriptions": [[1, "band1"]],
        "dtype": "uint16",
        "colorinterp": ["gray"],
        "nodata_type": "Nodata"
        "statistics": {
            "1": {
                "pc": [
                    324,
                    5046
                ],
                "min": 133,
                "max": 8582,
                "std": 1230.6977195618235,
                "histogram": [
                    [
                        199042, 178438, 188457, 118369, 57544, 20622, 9275, 2885, 761, 146
                    ],
                    [
                        133, 977.9, 1822.8, 2667.7, 3512.6, 4357.5, 5202.4, 6047.3, 6892.2, 7737.099999999999, 8582
                    ]
                ]
            }
        }
    }

Example

See /demo

Contribution & Development

Issues and pull requests are more than welcome.

dev install

$ git clone https://github.com/cogeotiff/rio-tiler-crs.git
$ cd rio-tiler-crs
$ pip install -e .[dev]

Python >=3.7 only

This repo is set to use pre-commit to run isort, flake8, pydocstring, black ("uncompromising Python code formatter") and mypy when committing new code.

$ pre-commit install

$ git add .

$ git commit -m'my change'
isort....................................................................Passed
black....................................................................Passed
Flake8...................................................................Passed
Verifying PEP257 Compliance..............................................Passed
mypy.....................................................................Passed

$ git push origin

About

A rio-tiler plugin to create tiles using TMS (WebMercator or others)

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published