This example load a DistilBERT model and confirm its accuracy and speed based on GLUE data.
pip install neural-compressor
pip install -r requirements.txt
Note: Validated ONNX Runtime Version.
download the GLUE data with prepare_data.sh
script.
export GLUE_DIR=path/to/glue_data
export TASK_NAME=MRPC
bash prepare_data.sh --data_dir=$GLUE_DIR --task_name=$TASK_NAME
Please refer to Bert-GLUE_OnnxRuntime_quantization guide for detailed model export. The following is a simple example.
Use Huggingface Transformers to fine-tune the model based on the MRPC example with command like:
export OUT_DIR=/path/to/out_dir/
python ./run_glue.py \
--model_type distilbert \
--model_name_or_path distilbert-base-uncased \
--task_name $TASK_NAME \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/$TASK_NAME \
--max_seq_length 128 \
--per_gpu_eval_batch_size=8 \
--per_gpu_train_batch_size=8 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--save_steps 100000 \
--output_dir $OUT_DIR
Run the prepare_model.sh
script
Usage:
cd examples/onnxrt/language_translation/distilbert/
bash prepare_model.sh --input_dir=$OUT_DIR \
--task_name=$TASK_NAME \
--output_model=path/to/model # model path as *.onnx
Dynamic quantization:
bash run_quant.sh --input_model=path/to/model \ # model path as *.onnx
--output_model=path/to/model_tune \ # model path as *.onnx
--dataset_location=path/to/glue_data
bash run_benchmark.sh --input_model=path/to/model \ # model path as *.onnx
--dataset_location=path/to/glue_data \
--batch_size=batch_size \
--mode=performance # or accuracy