-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
389 lines (354 loc) · 16.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="Few-shot Detection w/o Fine-tuning for Autonomous Exploration">
<meta name="keywords" content="Few-shot detection, Online, Robotic exploration">
<meta name="viewport" content="width=device-width, initial-scale=1">
<!-- <title>AirDet</title> -->
<!-- Global site tag (gtag.js) - Google Analytics -->
<!-- <script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-PYVRSFMDRL');
</script> -->
<link rel="icon" type="image/png" href="./static/images/ai4ce.png">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/ai4ce.png">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
<!-- <div class="navbar-menu">
<div class="navbar-start" style="flex-grow: 1; justify-content: center;">
<a class="navbar-item" href="https://jaraxxus-me.github.io/">
<span class="icon">
<i class="fas fa-home"></i>
</span>
</a>
<div class="navbar-item has-dropdown is-hoverable">
<a class="navbar-link">
More Research
</a>
<div class="navbar-dropdown">
<a class="navbar-item" href="https://ieeexplore.ieee.org/document/9561564">
ADTrack - ICRA 2021
</a>
<a class="navbar-item" href="https://openaccess.thecvf.com/content/ICCV2021/papers/Cao_HiFT_Hierarchical_Feature_Transformer_for_Aerial_Tracking_ICCV_2021_paper.pdf">
HiFT - ICCV 2021
</a>
</div>
</div>
</div> -->
</div>
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<!-- <h1 class="title is-1 publication-title"><img src="./static/images/drone.svg" width="120">AirDet </h1> -->
<h1 class="title is-2 publication-title">Latency-aware collaborative perception</h1>
<div class="column is-full_width">
<h2 class="title is-4">Accepted to ECCV 2022</h2>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block">
Zixing Lei</a><sup>1</sup>,</span>
<span class="author-block">
Shunli Ren</a><sup>1</sup>,</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=XBbwb78AAAAJ&hl=en&oi=sra">Yue Hu</a><sup>1</sup>,
</span>
<span class="author-block">
Wenjun Zhang</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=W_Q33RMAAAAJ&hl=en&oi=sra">Siheng Chen</a><sup>1,2</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>Cooperative Medianet Innovation Center, Shanghai Jiao Tong University</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>2</sup>Shanghai AI Laboratory</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://link.springer.com/chapter/10.1007/978-3-031-19824-3_19"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2207.08560"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Video Link. -->
<!-- <span class="link-block">
<a href="https://www.youtube.com/watch?v=MrKrnHhk8IA"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span> -->
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/MediaBrain-SJTU/SyncNet"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- Video Link. -->
<span class="link-block">
<a href="https://www.youtube.com/watch?v=Phek-3Q57Nc"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span>
<!-- Dataset Link. -->
<!-- <span class="link-block">
<a href="https://github.com/Jaraxxus-Me/AirDet"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="far fa-images"></i>
</span>
<span>Data</span>
</a>
</span> -->
<!-- <span class="link-block">
<a href="https://github.com/Jaraxxus-Me/AirDet_ROS"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-robot"></i>
</span>
<span>ROS</span>
</a>
</span> -->
<!-- <span class="link-block">
<a href="https://zhuanlan.zhihu.com/p/545249730"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-blog"></i>
</span>
<span>Blog</span>
</a>
</span> -->
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Paper video. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Video</h2>
<div class="publication-video">
<iframe src="https://www.youtube.com/embed/Phek-3Q57Nc"
frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
</div>
</div>
</div>
<!--/ Paper video. -->
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<img src="static\images\motivation.png" class="center"/>
<!-- <video id="teaser" autoplay muted loop height="100%">
<source src="./static/images/SUBT_video.mp4"
type="video/mp4">
</video> -->
<!-- <img class="rounded" src="./media/nice-slam/teaser.png" > -->
<br><br><br>
<!-- <h2 class="subtitle has-text-centered">
</h2> -->
<!-- <h2 class="subtitle has-text-centered">
(The <span style="color:#000000;">black</span> / <span style="color:#ff0000;">red</span> lines are the ground truth / predicted camera trajectory)
</h2> -->
<h2 class="is-size-6 has-text-centered"><strong>Left</strong>
Collaborative 3D detection. <span style="color:#ff0000;"><b>Red: Detected</b></span>, <span style="color:#00CC66;"><b>green: Ground truth</b></span>. Collaboration without considering latency could be even worse than no collaboration.
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Paper video. -->
<!-- <div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Video</h2>
<div class="publication-video">
<iframe src="https://www.youtube.com/embed/V5hYTz5os0M?rel=0&showinfo=0"
frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
</div>
</div>
</div> -->
<!--/ Paper video. -->
<!-- <br> -->
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Collaborative perception has recently shown great potential to improve perception capabilities over single-agent perception. Existing collaborative perception methods usually consider an ideal communication environment. However, in practice, the communication system inevitably suffers from latency issues, causing potential performance degradation and high risks in safety-critical applications, such as autonomous driving. To mitigate the effect caused by the inevitable latency, from a machine learning perspective, we present the first latency-aware collaborative perception system, which actively adapts asynchronous perceptual features from multiple agents to the same time stamp, promoting the robustness and effectiveness of collaboration. To achieve such a featurelevel synchronization, we propose a novel latency compensation module, called SyncNet, which leverages feature-attention symbiotic estimation and time modulation techniques. Experiments results show that the proposed latency aware collaborative perception system with SyncNet can outperforms the state-of-the-art collaborative perception method by 15.6% in the communication latency scenario and keep collaborative perception being superior to single agent perception under severe latency.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- <br> -->
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Contribution</h2>
<div class="content has-text-justified">
<li>
To the best of our knowledge, We formulate the communication latency challenge in collaborative perception <strong>for the first time</strong> and propose a novel latency-aware collaborative perception system, which promotes robust multi-agents perception by mitigating the effect of inevitable communication latency.
</li>
<li>
We propose a novel latency compensation module, termed SyncNet, to achieve feature-level synchronization. It achieves symbiotic estimation of two types of critical collaboration information, including intermediate features and collaboration attention, mutually enhancing each other.
</li>
<li>
We conduct comprehensive experiments to show that our proposed SyncNet achieves huge performance improvement in latency scenarios compared with the previous method and <strong>keeps collaborative perception being superior to single agent perception under severe latency</strong>.
</li>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Method. -->
<div class="columns is-centered has-text-centered">
<div class="column is-full_width">
<hr>
<h2 class="title is-3">Method</h2>
<br>
<img src="static\images\system.png" class="center"/>
<div class="content has-text-justified">
<br>
<p>
Overview of the proposed latency-aware collaborative perception system: The key module is a <strong>latency compensation module</strong>. To realize this, we propose SyncNet, which leverages historical collaboration information to synchronize the asynchronized information from multiple agents caused by the latency issue.
</p>
</div>
</div>
</div>
<hr>
<!-- Applications.-->
<div class="columns is-centered has-text-centered">
<div class="column is-full_width">
<h2 class="title is-3">Qualitative Results</h2>
</div>
</div>
<p>
 
</p>
<!-- <h3 class="title is-4">Attention of Detection Head</h3> -->
<div class="column is-full_width">
<img src="static\images\Qualitative Results.png" class="center"/>
<div class="content has-text-justified">
<br>
<p>
Collaborative 3D detection. <span style="color:#ff0000;"><b>Red: Detected</b></span>, <span style="color:#00CC66;"><b>green: Ground truth</b></span>. Collaboration without considering latency could be even worse than no collaboration.The figure shows that the detection results of DiscoNet without latency, DiscoNet with latency, DiscoNet+VE and DiscoNet + SyncNet. Comparing (a) with (b), we see that the correctly detected vehicles in the <span style="color:#9932CD;"><b>purple box</b></span> in (a) are missed or incorrectly detected in (b) due to the latency. (c) shows that the vanilla estimation partially compensates latency error in the blue box but fails to achieve accurate estimation in the orange box, while our SyncNet could precisely recover the true position of both vehicles, shown in purple box of (d). Plot (d) shows that SyncNet achieves the best compensation and precisely recovers the true position of vehicles.
</p>
</p>
</div>
</div>
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@inproceedings{lei2022latency,
title={Latency-aware collaborative perception},
author={Lei, Zixing and Ren, Shunli and Hu, Yue and Zhang, Wenjun and Chen, Siheng},
booktitle={European Conference on Computer Vision},
pages={316--332},
year={2022},
organization={Springer}
}</code></pre>
</div>
</section>
<!-- <section class="section" id="Acknowledgements">
<div class="container is-max-desktop content">
<h2 class="title">Acknowledgements</h2>
The work was done when Bowen Li and Pranay Reddy were interns at The Robotics Institute, CMU. The authors would like to thank all members of the Team Explorer for providing data collected from the DARPA Subterranean Challenge. Our code is built upon <a href="https://github.com/fanq15/FewX">FewX</a>, for which we sincerely express our gratitute to the authors.
</div>
</section> -->
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
This webpage template is from <a href="https://github.com/nerfies/nerfies.github.io">Nerfies</a>.
We sincerely thank <a href="https://keunhong.com/">Keunhong Park</a> for developing and open-sourcing this template.
</p>
</div>
</div>
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>