generated from vignetteapp/dotnet-template
-
-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Ayase Minori <[email protected]>
- Loading branch information
Showing
3 changed files
with
143 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
// Copyright (c) homuler and The Vignette Authors | ||
// This file is part of MediaPipe.NET. | ||
// MediaPipe.NET is licensed under the MIT License. See LICENSE for details. | ||
|
||
using BenchmarkDotNet.Attributes; | ||
using BenchmarkDotNet.Engines; | ||
using Mediapipe.Net.Framework; | ||
using Mediapipe.Net.Framework.Packets; | ||
using Mediapipe.Net.Framework.Protobuf; | ||
using SixLabors.ImageSharp; | ||
using SixLabors.ImageSharp.PixelFormats; | ||
using ImageFrame = Mediapipe.Net.Framework.Format.ImageFrame; | ||
|
||
namespace Mediapipe.Net.Benchmarks | ||
{ | ||
[SimpleJob(RunStrategy.Throughput, launchCount: 20, warmupCount: 10)] | ||
[MinColumn, MaxColumn, MeanColumn,MedianColumn] | ||
public class BlazeNetBenchmark | ||
{ | ||
private readonly ImageFrame referenceFrame; | ||
|
||
|
||
public BlazeNetBenchmark() | ||
{ | ||
var rawImage = Image.Load<Rgba32>("TestData/reference.png"); | ||
|
||
// convert to span first before converting to ImageFrame | ||
var rawImageSpan = new Span<byte>(); | ||
rawImage.CopyPixelDataTo(rawImageSpan); | ||
|
||
// widthStep is a thing from opencv, so we'll need to calculate it ourselves | ||
// this is calculated as width * bits per pixel, so rgba32 would be 4 bytes per pixel | ||
var widthStep = rawImage.Width * rawImage.PixelType.BitsPerPixel; | ||
|
||
referenceFrame = new ImageFrame(ImageFormat.Types.Format.Sbgra, rawImage.Width, rawImage.Height, widthStep, rawImageSpan); | ||
} | ||
|
||
[Benchmark] | ||
public void BlazeFaceBenchmark() | ||
{ | ||
// read pbtxt file to a string | ||
var graphCfg = File.ReadAllText("TestData/face_detection_front_cpu.pbtxt"); | ||
var graph = new CalculatorGraph(graphCfg); | ||
var poller = graph.AddOutputStreamPoller<ImageFrame>("output_video").Value(); | ||
|
||
graph.ObserveOutputStream<NormalizedLandmarkListPacket, NormalizedLandmarkList>("multi_face_landmarks", | ||
(packet) => | ||
{ | ||
var landmarks = packet.Get(); | ||
|
||
// report the landmarks | ||
foreach (var landmark in landmarks.Landmark) | ||
{ | ||
Console.WriteLine($"Landmark: {landmark.X}, {landmark.Y}, {landmark.Z}"); | ||
// do we have accuracy data too? | ||
if (landmark.HasVisibility) | ||
{ | ||
Console.WriteLine($"Visibility: {landmark.Visibility}"); | ||
} | ||
} | ||
}, out var cbHandle).AssertOk(); | ||
|
||
// start the graph | ||
graph.StartRun().AssertOk(); | ||
|
||
// send the image to the graph | ||
var inputFrame = new ImageFramePacket(referenceFrame); | ||
graph.AddPacketToInputStream("input_video", inputFrame).AssertOk(); | ||
|
||
// wait for the graph to finish | ||
graph.WaitUntilIdle().AssertOk(); | ||
|
||
// close the graph and clean up | ||
graph.CloseInputStream("input_video").AssertOk(); | ||
graph.WaitUntilDone().AssertOk(); | ||
cbHandle.Free(); | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
63 changes: 63 additions & 0 deletions
63
Mediapipe.Net.Benchmarks/TestData/face_mesh_desktop_live.pbtxt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
# MediaPipe graph that performs face mesh with TensorFlow Lite on CPU. | ||
|
||
# Input image. (ImageFrame) | ||
input_stream: "input_video" | ||
|
||
# Output image with rendered results. (ImageFrame) | ||
output_stream: "output_video" | ||
# Collection of detected/processed faces, each represented as a list of | ||
# landmarks. (std::vector<NormalizedLandmarkList>) | ||
output_stream: "multi_face_landmarks" | ||
|
||
# Throttles the images flowing downstream for flow control. It passes through | ||
# the very first incoming image unaltered, and waits for downstream nodes | ||
# (calculators and subgraphs) in the graph to finish their tasks before it | ||
# passes through another image. All images that come in while waiting are | ||
# dropped, limiting the number of in-flight images in most part of the graph to | ||
# 1. This prevents the downstream nodes from queuing up incoming images and data | ||
# excessively, which leads to increased latency and memory usage, unwanted in | ||
# real-time mobile applications. It also eliminates unnecessarily computation, | ||
# e.g., the output produced by a node may get dropped downstream if the | ||
# subsequent nodes are still busy processing previous inputs. | ||
node { | ||
calculator: "FlowLimiterCalculator" | ||
input_stream: "input_video" | ||
input_stream: "FINISHED:output_video" | ||
input_stream_info: { | ||
tag_index: "FINISHED" | ||
back_edge: true | ||
} | ||
output_stream: "throttled_input_video" | ||
} | ||
|
||
# Defines side packets for further use in the graph. | ||
node { | ||
calculator: "ConstantSidePacketCalculator" | ||
output_side_packet: "PACKET:num_faces" | ||
node_options: { | ||
[type.googleapis.com/mediapipe.ConstantSidePacketCalculatorOptions]: { | ||
packet { int_value: 1 } | ||
} | ||
} | ||
} | ||
# Subgraph that detects faces and corresponding landmarks. | ||
node { | ||
calculator: "FaceLandmarkFrontCpu" | ||
input_stream: "IMAGE:throttled_input_video" | ||
input_side_packet: "NUM_FACES:num_faces" | ||
output_stream: "LANDMARKS:multi_face_landmarks" | ||
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks" | ||
output_stream: "DETECTIONS:face_detections" | ||
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections" | ||
} | ||
# Subgraph that renders face-landmark annotation onto the input image. | ||
node { | ||
calculator: "FaceRendererCpu" | ||
input_stream: "IMAGE:throttled_input_video" | ||
input_stream: "LANDMARKS:multi_face_landmarks" | ||
input_stream: "NORM_RECTS:face_rects_from_landmarks" | ||
input_stream: "DETECTIONS:face_detections" | ||
output_stream: "IMAGE:output_video" | ||
} |