Skip to content

cpp977/Xped

Repository files navigation

License Documentation Linux Windows

Xped

Library for the manipulation of symmetric (block-sparse) tensors with arbitrary (X) amount of indices (ped).

Status

Builds Tests Coverage
Builds Tests codecov

Getting started

#include <type_traits>
#include "Xped/Core/Tensor.hpp"
int main()
{
// Make an alias for the symmetry. In this case a U1 symmetry for a spin.
using Symmetry = Xped::Sym::U1<Xped::Sym::Spin>;
// Initialize random basis objects which will be used to initialize tensors
Xped::Qbasis<Symmetry, /*depth=*/1> B1;
B1.setRandom(10);
Xped::Qbasis<Symmetry, /*depth=*/1> B2;
B2.setRandom(10);
// Initialize a random rank-3 tensor with two incoming and one outgoing leg with double precision numbers constrained by the symmetry declared
// above
Xped::Tensor<double, /*Rank=*/2, /*CoRank=*/1, Symmetry> T({{B1, B2}}, {{B1.combine(B2).forgetHistory()}});
T.setRandom();
// Unary and binary coefficientwise operations:
auto S = 3. * T; // this is an expression which is lazely evaluated
Xped::Tensor<double, 2, 1, Symmetry> Q = S.eval() + T; //.eval() can be used to force evaluation and assignment to tensor also forces evaluation
// makes a truncated singular value decomposition between domain and codomain keeping at most 50 singular values and discarding all singular
// values less than 1.e-10:
auto [U, Sigma, Vdag] = S.tSVD(50, 1.e-10);
static_assert(std::is_same_v<decltype(U), Xped::Tensor<double, 2, 1, Symmetry>>);
static_assert(std::is_same_v<decltype(S), Xped::Tensor<double, 1, 1, Symmetry>>);
static_assert(std::is_same_v<decltype(Vdag), Xped::Tensor<double, 1, 1, Symmetry>>);
// Permutation of the indices. shift specifies how much the domain is decreasing (and the codomain is increasing). The following indices
// describes the permutation.
auto X = T.permute</*shift1=*/+1, 2, 1, 0>(); // this gets evaluated immediately
// This is an SVD with a different partitioning of the legs
auto [U_, Sigma_, Vdag_] = X.tSVD(50, 1.e-10);
static_assert(std::is_same_v<decltype(U_), Xped::Tensor<double, 1, 1, Symmetry>>);
static_assert(std::is_same_v<decltype(S_), Xped::Tensor<double, 1, 1, Symmetry>>);
static_assert(std::is_same_v<decltype(Vdag_), Xped::Tensor<double, 1, 2, Symmetry>>);
// Multiplication of tensors is the contraction over the matching codomain/domain of the two tensors
auto prod = T * T.adjoint(); // this gets also evaluated immediately
// Arbitrary contractions are also possible:
auto res = T.contract<std::array{-1, -2, 1}, std::array{1, -4, -3}, /*ResRank=*/2>(X);
static_assert(std::is_same_v<decltype(res), Xped::Tensor<double, 2, 2, Symmetry>>);
}

Build

  1. Get the sources using: git clone --recurse-submodules https://github.com/cpp977/Xped
  2. Configure with cmake: cmake --preset=<preset> /path/to/source/Xped This also installs dependencies via vcpkg so the first run takes several minutes. The build directory is specified in the presets: /path/to/source/Xped/../<preset-name>
  3. Build tests: cmake --build --preset=<preset>
  4. Run the tests: ctest --preset=<preset>

To control the build, it is recomennded to choose a CMake preset so that several options are already set automatically. The available presets follow the scheme <compiler>-<backend>-<build-type>. E.g. gcc-eigen-release uses the gnu c++ compiler and the Eigen backend and performs a release build. Supported compilers are gcc (version >= 10), clang (version >= 12), msvc (version >= 19.30) and intel icpx (version >= 2021.04).

All build options can be seen in the following table.

Build Options

Option Default Description
XPED_BUILD_BENCHMARKS ON Build the benchmarks.
XPED_BUILD_CYCLOPS OFF Build the cyclops library from source.
XPED_BUILD_EXAMPLES OFF Build the benchmarks.
XPED_BUILD_TESTS ON Build the tests.
XPED_BUILD_TOOLS ON Build the tools.
XPED_COMPILED_LIB OFF Configure the library as a compiled library. Long compile times.
XPED_EFFICIENCY_MODEL XPED_TIME_EFFICIENT Xped tries to be time efficient.
XPED_ENABLE_BUILD_WITH_TIME_TRACE OFF Enable -ftime-trace to generate time tracing .json files on clang
XPED_ENABLE_CCACHE OFF Enable a compiler cache if available
XPED_ENABLE_CLANG_FORMAT ON Enable clang-format target.
XPED_ENABLE_CLANG_TIDY OFF Enable static analysis with clang-tidy
XPED_ENABLE_COVERAGE OFF Enable coverage reporting for gcc/clang
XPED_ENABLE_CPPCHECK OFF Enable static analysis with cppcheck
XPED_ENABLE_DOXYGEN OFF Enable doxygen doc builds of source
XPED_ENABLE_INCLUDE_WHAT_YOU_USE OFF Enable static analysis with include-what-you-use
XPED_ENABLE_IPO OFF Enable Interprocedural Optimization, aka Link Time Optimization (LTO)
XPED_ENABLE_LRU_CACHE OFF Use lru cache library from github.
XPED_ENABLE_SANITIZER_ADDRESS OFF Enable address sanitizer
XPED_ENABLE_SANITIZER_LEAK OFF Enable leak sanitizer
XPED_ENABLE_SANITIZER_MEMORY OFF Enable memory sanitizer
XPED_ENABLE_SANITIZER_THREAD OFF Enable thread sanitizer
XPED_ENABLE_SANITIZER_UNDEFINED_BEHAVIOR OFF Enable undefined behavior sanitizer
XPED_LAPACKE /usr/lib/x86_64-linux-gnu/liblapacke.so Path to a library.
XPED_LOG_LEVEL SPDLOG_LEVEL_CRITICAL Compile time log level.
XPED_MATRIX_LIB Eigen Used matrix library for plain tensor operations.
XPED_OPTIM_LIB ceres Used library for nonlinear gradient-based optimization.
XPED_PEDANTIC_ASSERTS OFF Enables rigorous assertions for tensor operations.
XPED_STORAGE Contiguous Used storage for Xped::Tensor.
XPED_TENSOR_LIB Eigen Used tensor library for plain tensor operations.
XPED_USE_AD ON Use automatic differentiation (AD) with Xped Tensors.
XPED_USE_BLAS ON Enable blas linking.
XPED_USE_LAPACK ON Enable lapack linking.
XPED_USE_LIBCXX OFF Use libc++ from llvm.
XPED_USE_MKL OFF Enable use of intel math kernel library (MKL).
XPED_USE_MPI OFF Enable message parsing interface (mpi) parallelization
XPED_USE_NLO ON Use nonlinear optimization algorithms.
XPED_USE_OPENMP ON Enable openmp parallelization
XPED_USE_SCALAPACK OFF Enable scalapack linking (only useful for MPI programs).
XPED_VECTOR_LIB Eigen Used vector library for plain tensor operations.

Documentation

Browse the documenation to learn about the capabilities of the library.

Acknowledgment

This library is inspired by a tensor framework for symmetric tensors written in the Julia programming language: TensorKit.