-
Excute ‘build.sh’ in the archive file to compile the code.
-
Download the video file into network/ir_fp32 or ir_fp16 folders. cd network/ir_fp32 # or ir_fp16 wget https://raw.githubusercontent.com/nealvis/media/master/traffic_vid/bus_station_6094_960x540.mp4
-
Download the weights file and convert the bin files. cd network a. download the SSD_GoogleNetV2 archive file from https://software.intel.com/file/609199/download =>SSD_GoogleNetV2_caffe.tgz b. Uncompress the archive files and rename SSD_GoogleNetV2.prototext from SSD_GoogleNetV2_Deploy.prototxt c. Convert the caffemodel as OpenVINO format. /opt//intel/computer_vision_sdk_2018.1.249/deployment_tools/model_optimizer/mo.py --input_model SSD_GoogleNetV2.caffemodel --output_dir ir_fp16 --data_type FP16 /opt//intel/computer_vision_sdk_2018.1.249/deployment_tools/model_optimizer/mo.py --input_model SSD_GoogleNetV2.caffemodel --output_dir ir_fp32 --data_type FP32
-
Link the library file into ir_fp32 and ir_fp16 folders and the binary file in build folder. cd network/ir_fp32 ln –s /opt/intel/computer_vision_sdk/deployment_tools/inference_engine/lib/ubuntu_16.04/ lib ln –s ../../build/intel64/Release/object_detection_demo_ssd_async object_detection_demo_ssd_async
-
Execute the demo a. CPU mode cd network/ir_fp32 ./object_detection_demo_ssd_async -i bus_station_6094_960x540.mp4 -m SSD_GoogleNetV2.xml b. MYRIAD mode cd network/ir_fp16 sudo ./object_detection_demo_ssd_async -i bus_station_6094_960x540.mp4 -m SSD_GoogleNetV2.xml -d MYRIAD
-
Notifications
You must be signed in to change notification settings - Fork 0
cuiqingqing/Objectdetection
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
UP2 board, myraid chip(AI core), Ubuntu 16.04
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published