forked from CU-DBMI/pycytominer-performance
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
sqlite col vs val types; further testing connectorx
work towards cytomining/pycytominer#198
- Loading branch information
Showing
4 changed files
with
496 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
import sqlite3 | ||
|
||
import pandas as pd | ||
|
||
# create connections for sqlite | ||
# reference: https://nih.figshare.com/articles/dataset/Cell_Health_-_Cell_Painting_Single_Cell_Profiles/9995672 | ||
sqlite_conn = sqlite3.connect("mod_SQ00014613.sqlite") | ||
|
||
image_cols = pd.read_sql("PRAGMA table_info(Image);", con=sqlite_conn) | ||
cells_cols = pd.read_sql("PRAGMA table_info(Cells);", con=sqlite_conn) | ||
cyto_cols = pd.read_sql("PRAGMA table_info(Cytoplasm);", con=sqlite_conn) | ||
nuclei_cols = pd.read_sql("PRAGMA table_info(Nuclei);", con=sqlite_conn) | ||
|
||
df_dict = { | ||
"image": image_cols, | ||
"cells": cells_cols, | ||
"cytoplasm": cyto_cols, | ||
"nuclei": nuclei_cols, | ||
} | ||
|
||
for tabname, df in df_dict.items(): | ||
for colname in df[df["type"].isin(["FLOAT", "BIGINT"])]["name"].values.tolist(): | ||
sql = f"UPDATE {tabname} SET {colname} = replace({colname}, 'nan', 0);" | ||
sqlite_conn.execute(sql) | ||
sqlite_conn.commit() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,273 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "321a7122-455a-4994-88ae-189d10773d31", | ||
"metadata": {}, | ||
"source": [ | ||
"# SQLite Database Types\n", | ||
"\n", | ||
"Checking on the types within the database to investigate connector-x compatibility as per https://github.com/sfu-db/connector-x/blob/main/Types.md#sqlite.\n", | ||
"\n", | ||
"Example errors:\n", | ||
"- `RuntimeError: Invalid column type Text at index: 61, name: Cytoplasm_Correlation_Costes_AGP_DNA`\n", | ||
"- `RuntimeError: Invalid column type Text at index: 64, name: Cytoplasm_Correlation_Costes_AGP_RNA`\n", | ||
"- `RuntimeError: Invalid column type Text at index: 74, name: Cytoplasm_Correlation_Costes_Mito_DNA`\n", | ||
"- `...Cytoplasm_Correlation_K_ER_Mito`\n", | ||
"- " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "96145791-4f23-43c9-802b-323d7a530da5", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import sqlite3\n", | ||
"\n", | ||
"import pandas as pd" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "30e1c744-8c17-4a4b-976a-eb02c40689ce", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# create connections for sqlite\n", | ||
"# reference: https://nih.figshare.com/articles/dataset/Cell_Health_-_Cell_Painting_Single_Cell_Profiles/9995672\n", | ||
"sqlite_conn = sqlite3.connect(\"SQ00014613.sqlite\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1cd718c0-93ba-40fd-a5ec-ba5862d9bc7f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sql = \"\"\"\n", | ||
"PRAGMA table_info(Image);\n", | ||
"\"\"\"\n", | ||
"image_cols = pd.read_sql(sql, con=sqlite_conn)\n", | ||
"image_cols[\"type\"].value_counts()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "b867daa1-a673-4c91-a10d-52cbec1c12ab", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sql = \"\"\"\n", | ||
"PRAGMA table_info(Cells);\n", | ||
"\"\"\"\n", | ||
"cells_cols = pd.read_sql(sql, con=sqlite_conn)\n", | ||
"cells_cols[\"type\"].value_counts()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5ac19955-f5e9-48c8-b5c5-d987488bfcf0", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sql = \"\"\"\n", | ||
"PRAGMA table_info(Cytoplasm);\n", | ||
"\"\"\"\n", | ||
"cyto_cols = pd.read_sql(sql, con=sqlite_conn)\n", | ||
"cyto_cols[\"type\"].value_counts()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "01b0301f-edad-46cf-8509-36c84283ebdc", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sql = \"\"\"\n", | ||
"PRAGMA table_info(Nuclei);\n", | ||
"\"\"\"\n", | ||
"nuclei_cols = pd.read_sql(sql, con=sqlite_conn)\n", | ||
"nuclei_cols[\"type\"].value_counts()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5b772781-8ae9-4c53-9a43-d431091586bd", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df_dict = {\n", | ||
" \"image\": image_cols,\n", | ||
" \"cells\": cells_cols,\n", | ||
" \"cytoplasm\": cyto_cols,\n", | ||
" \"nuclei\": nuclei_cols,\n", | ||
"}\n", | ||
"len(df_dict.keys())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "16a98b86-2368-48c2-8dde-841b30198f6d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df_dict[\"image\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6427d2ab-65fc-4d39-9419-548cbeec6ed8", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sql = \"\"\"\n", | ||
"select * from Cytoplasm\n", | ||
"where rowid = 61 or rowid = 60;\n", | ||
"\"\"\"\n", | ||
"cyto_errs = pd.read_sql(sql, con=sqlite_conn)\n", | ||
"cyto_errs" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f5aca2e4-52d2-46b8-bed4-e6e67d63711b", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"cyto_errs[\"Cytoplasm_Correlation_Costes_AGP_DNA\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "e911a997-7c06-4c86-a5a2-500f96f52828", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sql = \"\"\"\n", | ||
"select ObjectNumber, \n", | ||
" Cytoplasm_Correlation_Costes_AGP_DNA, \n", | ||
" typeof(Cytoplasm_Correlation_Costes_AGP_DNA) from Cytoplasm\n", | ||
"where rowid between 60 and 61;\n", | ||
"\"\"\"\n", | ||
"cyto_errs = pd.read_sql(sql, con=sqlite_conn)\n", | ||
"cyto_errs" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d9e49d05-be26-461b-8943-7936a8e5a468", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"cyto_cols[cyto_cols[\"name\"] == \"Cytoplasm_Correlation_Costes_AGP_DNA\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a0a8d54d-be71-44de-aa62-fa1e746cad46", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sql = \"\"\"\n", | ||
"select ObjectNumber, \n", | ||
" Cytoplasm_Correlation_Costes_AGP_DNA, \n", | ||
" typeof(Cytoplasm_Correlation_Costes_AGP_DNA) from Cytoplasm\n", | ||
"where typeof(Cytoplasm_Correlation_Costes_AGP_DNA) != 'real';\n", | ||
"\"\"\"\n", | ||
"cyto_errs = pd.read_sql(sql, con=sqlite_conn)\n", | ||
"cyto_errs" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8709db4e-da28-4dd9-a921-e7d6a16c9044", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sql = \"\"\"\n", | ||
"select ObjectNumber, \n", | ||
" Cytoplasm_Correlation_Costes_AGP_DNA, \n", | ||
" typeof(Cytoplasm_Correlation_Costes_AGP_DNA) from Cytoplasm\n", | ||
"where typeof(Cytoplasm_Correlation_Costes_AGP_DNA) != 'real';\n", | ||
"\"\"\"\n", | ||
"sqlite_conn.execute(sql).fetchall()[0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "467df648-9283-4812-a835-14ef8ace010b", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sql = \"\"\"\n", | ||
"select ObjectNumber, \n", | ||
" Cytoplasm_Correlation_Costes_AGP_DNA,\n", | ||
" replace(Cytoplasm_Correlation_Costes_AGP_DNA, 'nan', NULL),\n", | ||
" typeof(Cytoplasm_Correlation_Costes_AGP_DNA) from Cytoplasm\n", | ||
"where typeof(Cytoplasm_Correlation_Costes_AGP_DNA) != 'real';\n", | ||
"\"\"\"\n", | ||
"cyto_errs = pd.read_sql(sql, con=sqlite_conn)\n", | ||
"cyto_errs" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "b036e290-1de9-4847-9869-52d9dad06bf3", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for tabname, df in df_dict.items():\n", | ||
" for colname in df[df[\"type\"].isin([\"FLOAT\", \"BIGINT\"])][\"name\"].values.tolist():\n", | ||
" sql = f\"UPDATE {tabname} SET {colname} = replace({colname}, 'nan', 0);\"\n", | ||
" sqlite_conn.execute(sql)\n", | ||
" sqlite_conn.commit()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d1147f2d-a1e1-49c3-8c3a-e645ecbeb840", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.