This repository has been archived by the owner on Jan 30, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmkyields.py
713 lines (517 loc) · 23.3 KB
/
mkyields.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
from yields import Yields
from plotters.xsec import xsecs
from uncertainties import ufloat
from numpy import sqrt
from tabulate import tabulate
import numpy as np
import logging
import sys
import json
_4L_MASSES = [110, 130, 150, 170, 200, 250, 300,
350, 400, 450, 500, 600, 700]
log = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
class Scales(object):
def __init__(self, br_ee, br_em, br_et, br_mm, br_mt, br_tt):
x = np.array([br_ee, br_em, br_et, br_mm, br_mt, br_tt], dtype=float)
self.m = np.outer(x, x) * 36.0
self.index = {"ee": 0, "em": 1, "et": 2, "mm": 3, "mt": 4, "tt": 5}
def scale(self, hpp, hmm):
i = self.index[hpp]
j = self.index[hmm]
return self.m[i,j]
def data_sideband(mass, channel, cuts='(True)', tau=False):
"""
Compute the number of data events in the sidebands.
Parameters
----------
mass : float
channel : str
Must be 'eeee', 'emem', or 'mmmm', etc.
cuts : str
Additional sideband selections
Returns
-------
N : int
Number of events in sideband from data
"""
# Define mass window
if tau:
window = '(%f < h1mass) & (h1mass < %f)' % (0.5*mass, 1.1*mass)
window += '& (%f < h2mass) & (h2mass < %f)' % (0.5*mass, 1.1*mass)
else:
window = '(%f < h1mass) & (h1mass < %f)' % (0.9*mass, 1.1*mass)
window += '& (%f < h2mass) & (h2mass < %f)' % (0.9*mass, 1.1*mass)
bounds = '(12 < h1mass) & (h1mass < 700) & (12 < h2mass) & (h2mass < 700)'
x = Yields("DblH", "~(%s) & (%s) & (%s) & (%s)" % (window, bounds, cuts, channel),
"./ntuples", channels=["dblh4l"], lumi=19.7)
x.add_group("data", "data_*", isData=True)
return x.yields("data")[0]
def alpha(mass, channel, tau=False):
"""
Compute alpha used in sideband method background estimation
Parameters
----------
mass : float
channel : str
Must be 'eeee', 'emem', or 'mmmm', etc.
cuts : str
Additional sideband selections
Returns
-------
alpha : float
If the sideband has 0 MC statistics, return MC value in signal region
If the error in the signal region is greater than nominal value,
return the standard deviaiton in signal region
Otherwise, return the ratio of the events in the signal region to
the sidebands
"""
if tau:
cuts = '(%f < h1mass) & (h1mass < %f)' % (0.5*mass, 1.1*mass)
cuts += '& (%f < h2mass) & (h2mass < %f)' % (0.5*mass, 1.1*mass)
else:
cuts = '(%f < h1mass) & (h1mass < %f)' % (0.9*mass, 1.1*mass)
cuts += '& (%f < h2mass) & (h2mass < %f)' % (0.9*mass, 1.1*mass)
inner = Yields("DblH", "(%s) & (%s)" % (cuts, channel), "./ntuples",
channels=["dblh4l"], lumi=19.7)
inner.add_group("zz", "ZZTo*", "ggZZ*")
inner.add_group("top", "T*")
inner.add_group("dyjets", "Z[1234]jets*M50")
sig = ufloat(*inner.yields("zz")) + ufloat(*inner.yields("top")) + \
ufloat(*inner.yields("dyjets"))
bounds = '(12 < h1mass) & (h1mass < 700) & (12 < h2mass) & (h2mass < 700)'
outer = Yields("DblH", "~(%s) & (%s) & (%s)" % (cuts, bounds, channel),
"./ntuples", channels=["dblh4l"], lumi=19.7)
outer.add_group("zz", "ZZTo*", "ggZZ*")
outer.add_group("top", "T*")
outer.add_group("dyjets", "Z[1234]jets*M50")
with open('plotters/mc_events.json', 'r') as jfile:
mc_events = json.load(jfile)
single_zz_event = xsecs['ZZTo4e_8TeV-powheg-pythia6'] * 19.7 / \
mc_events['ZZTo4e_8TeV-powheg-pythia6']
bkg = ufloat(*outer.yields("zz")) + ufloat(*outer.yields("top")) + \
ufloat(*outer.yields("dyjets"))
if bkg.nominal_value == 0.0:
return sig.nominal_value
if sig.nominal_value < sig.std_dev:
return sig.std_dev
if sig.nominal_value == 0.0:
return single_zz_event
else:
return (sig/bkg).nominal_value
def bkg_estimate(mass, channel, cuts='(True)'):
"""
Compute the background estimate using the sideband method
Parameters
----------
mass : float
channel : str
cuts : str
Returns
-------
Nbgsr : float
Number of background events in signal region
Err : float
Error on background estimate in signal region
"""
alp = alpha(mass, channel)
Nsb = data_sideband(mass, channel, cuts=cuts)
Nbgsr = alp * (Nsb + 1.0)
Err = alp * sqrt(Nsb + 1.0)
return (Nbgsr, Err)
def test():
mass = 300
cuts = '(%f < h1mass) & (h1mass < %f)' % (0.9*mass, 1.1*mass)
cuts+= '& (%f < h2mass) & (h2mass < %f)' % (0.9*mass, 1.1*mass)
cuts += '& (channel == "mmmm")'
sig_reg = Yields("DblH", cuts, "./ntuples", channels=["dblh4l"], lumi=19.7)
sig_reg.add_group("zz", "ZZTo*")
sig_reg.add_group("top", "T*")
zz = ufloat(*sig_reg.yields("zz"))
top = ufloat(*sig_reg.yields("top"))
print zz + top
cuts = '(%f > h1mass) & (h1mass > %f)' % (0.9*mass, 1.1*mass)
cuts+= '& (%f > h2mass) & (h2mass > %f)' % (0.9*mass, 1.1*mass)
cuts += '& (channel == "mmmm")'
bkg_reg = Yields("DblH", cuts, "./ntuples", channels=["dblh4l"], lumi=19.7)
bkg_reg.add_group("zz", "ZZTo*")
bkg_reg.add_group("top", "T*")
z = ufloat(*bkg_reg.yields("zz"))
print z
print (zz + top)/(z)
def mktable(channels):
out = np.zeros((len(_4L_MASSES), 6))
for i, mass in enumerate(_4L_MASSES):
cuts = '(%f < h1mass) & (h1mass < %f)' % (0.9*mass, 1.1*mass)
cuts+= '& (%f < h2mass) & (h2mass < %f)' % (0.9*mass, 1.1*mass)
cuts += '& (%s)' % ' | '.join(['(channel == "%s")' % channel for channel
in channels])
mc_bkg = Yields("DblH", cuts, "./ntuples", channels=["dblh4l"],
lumi=19.7)
mc_bkg.add_group("zz", "ZZTo*")
mc_bkg.add_group("top", "T*")
mc_bkg.add_group("dyjets", "Z[1234]jets*M50")
bkg_rate = ufloat(*mc_bkg.yields("zz")) + ufloat(*mc_bkg.yields("top"))\
+ ufloat(*mc_bkg.yields("dyjets"))
bkg_est = bkg_estimate(mass, '(%s)' % ' | '.join(['(channel == "%s")' %
channel for channel
in channels]))
mc_sig = Yields("DblH", cuts, "./ntuples", channels=["dblh4l"],
lumi=19.7)
mc_sig.add_group("sig", "HPlus*M-%i_8TeV*" % mass)
sig_rate = ufloat(*mc_sig.yields("sig"))*36.0
out[i,0] = sig_rate.nominal_value
out[i,1] = sig_rate.std_dev
out[i,2] = bkg_rate.nominal_value
out[i,3] = bkg_rate.std_dev
out[i,4] = bkg_est[0]
out[i,5] = bkg_est[1]
return out
def bkg_compare(mass, channels, scale=36.0):
cuts = '(%f < h1mass) & (h1mass < %f)' % (0.9*mass, 1.1*mass)
cuts+= '& (%f < h2mass) & (h2mass < %f)' % (0.9*mass, 1.1*mass)
cuts += '& (%s)' % ' | '.join(['(channel == "%s")' % channel for channel
in channels])
mc_bkg = Yields("DblH", cuts, "./ntuples", channels=["dblh4l"],
lumi=19.7)
mc_bkg.add_group("zz", "ZZTo*")
mc_bkg.add_group("top", "T*")
mc_bkg.add_group("dyjets", "Z[1234]jets*M50")
bkg_rate = ufloat(*mc_bkg.yields("zz")) + ufloat(*mc_bkg.yields("top"))\
+ ufloat(*mc_bkg.yields("dyjets"))
bkg_est = bkg_estimate(mass, '(%s)' % ' | '.join(['(channel == "%s")' %
channel for channel
in channels]))
mc_sig = Yields("DblH", cuts, "./ntuples", channels=["dblh4l"],
lumi=19.7)
mc_sig.add_group("sig", "HPlus*M-%i_8TeV*" % mass)
sig_rate = ufloat(*mc_sig.yields("sig")) * ufloat(1.0, 0.15) * scale
return np.array([bkg_rate, ufloat(bkg_est[0], bkg_est[1]), ufloat(0.0,0.0), sig_rate])
def bkg_table_BP1(mass):
s = Scales(0, 0.01, 0.01, 0.3, 0.38, 0.3)
out = bkg_compare(mass, ["emem", "emme", "meme", "meem"], scale=s.scale("em","em"))
out += bkg_compare(mass, ["emmm", "memm"], scale=s.scale("em","mm"))
out += bkg_compare(mass, ["mmem", "mmme"], scale=s.scale("mm","em"))
out += bkg_compare(mass, ["mmmm"], scale=s.scale("mm","mm"))
return out
def bkg_table_BP2(mass):
s = Scales(0.5, 0, 0, 0.125, 0.25, 0.125)
out = bkg_compare(mass, ["eemm"], scale=s.scale("ee","mm"))
out += bkg_compare(mass, ["mmee"], scale=s.scale("mm","ee"))
out += bkg_compare(mass, ["eeee"], scale=s.scale("ee","ee"))
out += bkg_compare(mass, ["mmmm"], scale=s.scale("mm","mm"))
return out
def bkg_table_BP3(mass):
s = Scales(0.34, 0, 0, 0.33, 0, 0.33)
out = bkg_compare(mass, ["eemm"], scale=s.scale("ee","mm"))
out += bkg_compare(mass, ["mmee"], scale=s.scale("mm","ee"))
out += bkg_compare(mass, ["eeee"], scale=s.scale("ee","ee"))
out += bkg_compare(mass, ["mmmm"], scale=s.scale("mm","mm"))
return out
def bkg_table_BP4(mass):
s = Scales(1./6., 1./6., 1./6., 1./6., 1./6., 1./6.)
out = bkg_compare(mass, ["emem", "emme", "meme", "meem"], scale=s.scale("em","em"))
out += bkg_compare(mass, ["emmm", "memm"], scale=s.scale("em","mm"))
out += bkg_compare(mass, ["mmem", "mmme"], scale=s.scale("mm","em"))
out += bkg_compare(mass, ["mmmm"], scale=s.scale("mm","mm"))
out += bkg_compare(mass, ["eeee"], scale=s.scale("ee","ee"))
out += bkg_compare(mass, ["eemm"], scale=s.scale("ee","mm"))
out += bkg_compare(mass, ["mmee"], scale=s.scale("mm","ee"))
return out
def bkg_table_mm100(mass):
out = bkg_compare(mass, ["mmmm"], scale=36.0)
return out
def bkg_table_ee100(mass):
out = bkg_compare(mass, ["eeee"], scale=36.0)
return out
def bkg_table_em100(mass):
out = bkg_compare(mass, ["emem", "emme", "meem", "meme"], scale=36.0)
return out
def signal_yield(mass, cut, channel, final_states, scale):
fs_cuts = '(%s)' % ' | '.join(
['((hpp_dec == %i) & (hmm_dec == %i))' % fs for fs in final_states]
)
cuts = '(%s) & %s & (channel == "%s")' % (cut, fs_cuts, channel)
sig = Yields("DblH", cuts, "./ntuples", channels=["dblh4l"], lumi=19.7)
sig.add_group("sig", "HPlus*M-%i_8TeV*" % mass)
return sig.yields("sig")[0] * scale
def ee100_yield(mass, cuts):
out = signal_yield(mass, cuts, "eeee", [(11,11)], 36.0)
return out
def mm100_yield(mass, cuts):
out = signal_yield(mass, cuts, "mmmm", [(22,22)], 36.0)
return out
def em100_yield(mass, cuts):
out = signal_yield(mass, cuts, "emem", [(21,21)], 36.0)
return out
def BP1_yield(mass, cuts):
s = Scales(0, 0.01, 0.01, 0.3, 0.38, 0.3)
out = signal_yield(mass, cuts, "emem", [(21,21)], s.scale("em","em"))
out += signal_yield(mass, cuts, "emmm", [(21,22)], s.scale("em","mm"))
out += signal_yield(mass, cuts, "mmem", [(22,21)], s.scale("mm","em"))
out += signal_yield(mass, cuts, "mmmm", [(22,22)], s.scale("mm","mm"))
return out
def BP2_yield(mass, cuts):
s = Scales(0.5, 0, 0, 0.125, 0.25, 0.125)
out = signal_yield(mass, cuts, "eemm", [(11,22)], s.scale("ee","mm"))
out += signal_yield(mass, cuts, "mmee", [(22,11)], s.scale("mm","ee"))
out += signal_yield(mass, cuts, "eeee", [(11,11)], s.scale("ee","ee"))
out += signal_yield(mass, cuts, "mmmm", [(22,22)], s.scale("mm","mm"))
return out
def BP3_yield(mass, cuts):
s = Scales(0.34, 0, 0, 0.33, 0, 0.33)
out = signal_yield(mass, cuts, "eemm", [(11,22)], s.scale("ee","mm"))
out += signal_yield(mass, cuts, "mmee", [(22,11)], s.scale("mm","ee"))
out += signal_yield(mass, cuts, "eeee", [(11,11)], s.scale("ee","ee"))
out += signal_yield(mass, cuts, "mmmm", [(22,22)], s.scale("mm","mm"))
return out
def BP4_yield(mass, cuts):
s = Scales(1./6., 1./6., 1./6., 1./6., 1./6., 1./6.)
out = signal_yield(mass, cuts, "emem", [(21,21)], s.scale("em","em"))
out += signal_yield(mass, cuts, "emmm", [(21,22)], s.scale("em","mm"))
out += signal_yield(mass, cuts, "mmem", [(22,21)], s.scale("mm","em"))
out += signal_yield(mass, cuts, "mmmm", [(22,22)], s.scale("mm","mm"))
out += signal_yield(mass, cuts, "emee", [(21,11)], s.scale("em","ee"))
out += signal_yield(mass, cuts, "eeem", [(11,21)], s.scale("ee","em"))
out += signal_yield(mass, cuts, "eeee", [(11,11)], s.scale("ee","ee"))
out += signal_yield(mass, cuts, "eemm", [(11,22)], s.scale("ee","mm"))
out += signal_yield(mass, cuts, "mmee", [(22,11)], s.scale("mm","ee"))
return out
def bkg_mc_yield(cuts):
mc_bkg = Yields("DblH", cuts, "./ntuples", channels=["dblh4l"],
lumi=19.7)
mc_bkg.add_group("zz", "ZZTo*", "ggZZ*")
mc_bkg.add_group("top", "T*")
mc_bkg.add_group("dyjets", "Z[1234]jets*M50")
bkg_rate = ufloat(*mc_bkg.yields("zz")) + ufloat(*mc_bkg.yields("top"))\
+ ufloat(*mc_bkg.yields("dyjets"))
return bkg_rate.nominal_value
def efficiencies(BP):
yield_fun = {"ee100": ee100_yield,
"em100": em100_yield,
"mm100": mm100_yield,
"BP1": BP1_yield,
"BP2": BP2_yield,
"BP3": BP3_yield,
"BP4": BP4_yield}
yields = np.zeros((len(_4L_MASSES), 3))
for i, mass in enumerate(_4L_MASSES):
cut1 = '(%f < h1mass) & (h1mass < %f) & (%f < h2mass) & (h2mass < %f)' % (0.9*mass, 1.1*mass, 0.9*mass, 1.1*mass)
cut2 = '(%f < sT)' % (0.6*mass + 130.0)
for j, cut in enumerate(['mass > 0', cut1, cut1 + '&' + cut2]):
yields[i,j] = yield_fun[BP](mass, cut)
eff = np.zeros((len(_4L_MASSES), 3))
eff[:,0] = np.array(_4L_MASSES).T
eff[:,1] = yields[:,1] / yields[:,0]
eff[:,2] = yields[:,2] / yields[:,1]
print tabulate(eff, headers=["Mass", "Window", "sT"])
def an_efficiencies():
sig_yields = np.zeros((len(_4L_MASSES), 3))
bkg_yields = np.zeros((len(_4L_MASSES), 3))
for i, mass in enumerate(_4L_MASSES):
cut1 = '(%f < h1mass) & (h1mass < %f) & (%f < h2mass) & (h2mass < %f)' % (0.9*mass, 1.1*mass, 0.9*mass, 1.1*mass)
cut2 = '(%f < sT)' % (0.6*mass + 130.0)
for j, cut in enumerate(['mass > 0', cut1, cut1 + '&' + cut2]):
sig_yields[i,j] = BP4_yield(mass, cut)
bkg_yields[i,j] = bkg_mc_yield(cut)
eff1 = np.zeros((2*len(_4L_MASSES), 3))
eff2 = np.zeros((2*len(_4L_MASSES), 3))
eff1[::2,0] = np.array(_4L_MASSES).T
eff1[::2,1] = sig_yields[:,1] / sig_yields[:,0]
eff1[::2,2] = sig_yields[:,2] / sig_yields[:,1]
eff1[1::2,0] = np.array(_4L_MASSES).T
eff1[1::2,1] = bkg_yields[:,1] / bkg_yields[:,0]
eff1[1::2,2] = bkg_yields[:,2] / bkg_yields[:,1]
eff2[::2,0] = np.array(_4L_MASSES).T
eff2[::2,1] = sig_yields[:,1] / sig_yields[:,0]
eff2[::2,2] = sig_yields[:,2] / sig_yields[:,0]
eff2[1::2,0] = np.array(_4L_MASSES).T
eff2[1::2,1] = bkg_yields[:,1] / bkg_yields[:,0]
eff2[1::2,2] = bkg_yields[:,2] / bkg_yields[:,0]
print r"Mass (GeV) & Sample & Mass Window & $s_T$ \\ \hline"
for i, row in enumerate(eff1):
if i%2:
print " & Background & %.5f & %.5f \\\\ \\hline" % (row[1], row[2])
else:
print " %i & Signal & %.5f & %.5f \\\\" % (row[0], row[1], row[2])
print r"Mass (GeV) & Sample & Mass Window & $s_T$ \\ \hline"
for i, row in enumerate(eff2):
if i%2:
print " & Background & %.5f & %.5f \\\\ \\hline" % (row[1], row[2])
else:
print " %i & Signal & %.5f & %.5f \\\\" % (row[0], row[1], row[2])
#print tabulate(eff1, headers=["Mass", "Window", "sT"], floatfmt=".3f")
#print tabulate(eff2, headers=["Mass", "Window", "sT"], floatfmt=".3f")
def generate_bkg_tables():
functions = [bkg_table_ee100, bkg_table_em100, bkg_table_mm100,
bkg_table_BP1, bkg_table_BP2, bkg_table_BP3, bkg_table_BP4]
with open('bkg_tables_zveto.txt', 'w') as outfile:
for fun in functions:
log.info("Processing BP: %s" % fun.func_name)
header = "\n" + fun.func_name + "\n"
header += "\\hline\n"
header += r"Mass (GeV) & MC Estimate & Sideband Estimate & Observation & Signal \\" + "\n"
header += "\\hline\n"
outfile.write(header)
for mass in _4L_MASSES:
values = fun(mass)
string = ("%i &"
" $%.2f \\pm %.2f$ &"
" $%.2f \\pm %.2f$ &"
" $%.2f \\pm %.2f$ &"
" $%.2f \\pm %.2f$ \\\\\n" %
(mass,
values[0].nominal_value, values[0].std_dev,
values[1].nominal_value, values[1].std_dev,
values[2].nominal_value, values[2].std_dev,
values[3].nominal_value, values[3].std_dev))
outfile.write(string)
def sidebands(channels):
out = []
for i, mass in enumerate(_4L_MASSES):
cuts = '(%f < h1mass) & (h1mass < %f)' % (0.9*mass, 1.1*mass)
cuts+= '& (%f < h2mass) & (h2mass < %f)' % (0.9*mass, 1.1*mass)
cuts += '& (%s)' % ' | '.join(['(channel == "%s")' % channel for channel
in channels])
# sideband alpha
a = alpha(mass,
'(%s)' % ' | '.join(['(channel == "%s")' % channel for channel in channels]))
sb = data_sideband(mass,
'(%s)' % ' | '.join(['(channel == "%s")' % channel for channel in channels]),
cuts='(%f < sT)' % (0.6*mass + 130.0))
bkg = bkg_estimate(mass,
'(%s)' % ' | '.join(['(channel == "%s")' % channel for channel in channels]),
cuts='(%f < sT)' % (0.6*mass + 130.0))
out.append([mass, "%.4f" % a, sb, r"$%.4f \pm %.4f$" % (bkg[0], bkg[1]), 0])
print ""
print tabulate(out, headers=["Mass (GeV)", r"\alpha",
"Sideband Events (data)",
"Signal Region Background Estimation",
"Signal Region Events (data)"],
tablefmt="latex")
def lepscale(channels):
"""
Print a table of the %-change in the signal yields (for each mass point)
for the provided channel.
"""
out = []
#for mass in (_4L_MASSES):
for mass in ([110]):
log.info("Processing signal mass: %s" % mass)
# Apply 2D mass window for the given mass point
cuts = '(%f < h1mass) & (h1mass < %f)' % (0.9*mass, 1.1*mass)
cuts += '& (%f < h2mass) & (h2mass < %f)' % (0.9*mass, 1.1*mass)
# Select which channels to look at
cuts += '& (%s)' % ' | '.join(['(channel == "%s")' % channel for channel
in channels])
mc_sig = Yields("DblH", cuts, "./ntuples", channels=["dblh4l"],
lumi=19.7)
mc_sig.add_group("sig", "HPlus*M-%i_8TeV*" % mass)
# compute the nominal yields with the normal scale factors
nominal = mc_sig.yields("sig")[0]
# compute the yields with the scaled-up scale factors
e_up = mc_sig.yields("sig", scale = "lep_scale_e_up")[0]
mu_up = mc_sig.yields("sig", scale = "lep_scale_m_up")[0]
# compute the %-change in the yields
diff_e = (e_up - nominal)/nominal + 1.0
diff_mu = (mu_up - nominal)/nominal + 1.0
out.append([mass, nominal, e_up, mu_up, diff_e, diff_mu])
print ""
print channels[0]
print tabulate(out, headers=["Mass", "Nominal Yield", "Yield e Up",
"Yield mu Up", "%-Diff e", "%-Diff mu"],
floatfmt=".3f")
def lepscale_ZZ():
"""
Print a table of the %-change in the signal yields (for each mass point)
for the provided channel.
"""
chan = [["mmmm"],["eeee"],["eemm","mmee"]]
out = []
for channels in chan:
# HZZ4L phase space cuts
cuts = ('(mass > 0) '
'& (40 < z1mass) & (z1mass < 120) '
'& (12 < z2mass) & (z2mass < 120)')
# Select which channels to look at
cuts += '& (%s)' % ' | '.join(['(channel == "%s")' % channel for channel
in channels])
mc_sig = Yields("ZZ4l", cuts, "./ntuples", channels=["zz4l"], lumi=19.7)
mc_sig.add_group("sig", "GluGluToH*")
# compute the nominal yields with the normal scale factors
nominal = mc_sig.yields("sig")[0]
# compute the yields with the scaled-up scale factors
e_up = mc_sig.yields("sig", scale = "lep_scale_e_up")[0]
mu_up = mc_sig.yields("sig", scale = "lep_scale_m_up")[0]
# compute the %-change in the yields
diff_e = (e_up - nominal)/nominal * 100.0
diff_mu = (mu_up - nominal)/nominal * 100.0
out.append([channels[0], nominal, e_up, mu_up, diff_e, diff_mu])
print ""
print tabulate(out, headers=["Channels", "Nominal Yield", "Yield e Up",
"Yield mu Up", "%-Diff e", "%-Diff mu"])
def table2latex(table):
nrows = table.shape[0]
for i in range(nrows):
row = table[i,:]
line = ' & '.join(['%.3e' % k for k in row])
print _4L_MASSES[i], '&', line, r'\\'
if __name__ == "__main__":
#out = mktable(["emem", "meme", "emme", "meem"])
#out = mktable(["mmmm"])
#out = mktable(["eeee"])
#print "mass mc_sig sigma(mc_sig) mc_bkg sigma(mc_bkg) sb_bkg sigma(sb_bkg)"
#for i, mass in enumerate(_4L_MASSES):
# print mass, out[i,0], out[i,1], out[i,2], out[i,3], out[i,4], out[i,5]
arg = sys.argv[1]
if arg == "lepscale":
arg2 = sys.argv[2]
if arg2 == "mmmm":
lepscale(["mmmm"])
elif arg2 == "eeee":
lepscale(["eeee"])
elif arg2 == "emem":
lepscale(["emem","emme","meem","meme"])
elif arg2 == "eemm":
lepscale(["eemm","mmee"])
elif arg2 == "eeem":
lepscale(["eeem","eeme","emee","meee"])
elif arg2 == "emmm":
lepscale(["mmme","mmem","memm","emmm"])
elif arg2 == "zz":
lepscale_ZZ()
else:
raise ValueError("invalid argument")
elif arg == "sidebands":
arg2 = sys.argv[2]
if arg2 == "mm100":
sidebands(["mmmm"])
elif arg2 == "ee100":
sidebands(["eeee"])
elif arg2 == "em100":
sidebands(["emem","emme","meem","meme"])
elif arg2 == "BP1":
sidebands(["emem","emme","meem","meme",
"mmmm"
"mmme","mmem","memm","emmm"])
elif arg2 == "BP2":
sidebands(["eeee","mmmm","eemm","mmee"])
elif arg2 == "BP3":
sidebands(["eeee","mmmm","eemm","mmee"])
elif arg2 == "BP4":
sidebands(["emem","emme","meem","meme",
"mmmm","eeee"
"eemm","mmee",
"eeem","eeme","emee","meee",
"mmme","mmem","memm","emmm"])
else:
raise ValueError("invalid argument")
elif arg == "bkg_tables":
generate_bkg_tables()
elif arg == "efficiencies":
arg2 = sys.argv[2]
efficiencies(arg2)
elif arg == "an_efficiencies":
an_efficiencies()
else:
raise ValueError("Unrecognized option: '%s'" % arg)