Skip to content

danfeiX/deftenv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeftEnv: A Simulated Environment for Sequential Manipulation

This is a reference implementation for the environments used in Deep Affordance Foresight. If you find this codebase useful, please cite the work using the following bibtex:

@inproceedings{xu2021deep,
  title={Deep affordance foresight: Planning through what can be done in the future},
  author={Xu, Danfei and Mandlekar, Ajay and Mart{\'\i}n-Mart{\'\i}n, Roberto and Zhu, Yuke and Savarese, Silvio and Fei-Fei, Li},
  booktitle={2021 IEEE International Conference on Robotics and Automation (ICRA)},
  pages={6206--6213},
  year={2021},
  organization={IEEE}
}

Getting Started

1. Install DeftEnv:

$ git clone https://github.com/danfeiX/deftenv.git
$ cd deftenv
# you may want to create a separate virtualenv to avoid package contamination
$ pip install -e .

2. Run an example

Run and visualize a guided exploration session and collect demonstrations.

Tool manipulation + stacking:

$ python scripts/kitchen_main.py --mode demo --env ToolStackAP --file demo.hdf5 --gui --keep_failed_demos --keep_interrupted_demos

Kitchen make coffee or tea (random sample task goal):

$ python scripts/kitchen_main.py --mode demo --env KitchenDualCoffeeAP --file demo.hdf5 --gui --keep_failed_demos --keep_interrupted_demos

3. Extract training data

Extract training data from the demonstrations that we just collected in demo.hdf5

python deftenv/scripts/kitchen_main.py --mode extract_skill --file demo.hdf5 --extract_name training_data.hdf5

Acknowledgement

  • The kitchen environment assets are created by William Shen.
  • The pybullet tools are borrowed from Caelan's awesome PyBullet Planning codebase.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published