-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconvex_hull_main.py
142 lines (124 loc) · 4.55 KB
/
convex_hull_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#%%
from pathlib import Path
import ray
import torch
import pytorch_lightning as pl
from numpy.random import default_rng
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
import wandb
import misc
import metrics
from convex_hull_dataset import get_ch_dl
from hypergraph_refiner import IterativeRefiner # StackedRefiner
# Dataset
D_FEATS = 3
N_POINTS = torch.arange(30,31)
UNIT_NORM = True
# Model hyperparameter
D_HID = 128
# Training hyperparameter
N_BPTT = 2
T_BPTT = 4
T_TOTAL = 16
BATCH_SIZE = 64
LR = 0.0003
N_EPOCHS = 1000
# Miscellaneous
SEED = 123456
RNG = default_rng(SEED)
pl.seed_everything(SEED)
N_RAY = 10
if N_RAY > 0:
ray.init(num_cpus=N_RAY,include_dashboard=False)
class IRModel(pl.LightningModule):
def __init__(self, max_edges):
super().__init__()
self.net = IterativeRefiner(max_edges, D_FEATS, D_HID, T_TOTAL)
self.automatic_optimization = False
self.sampler = misc.IntegerPartitionSampler(T_TOTAL-T_BPTT*N_BPTT, N_BPTT, RNG)
def forward(self, inputs):
e_t, v_t, i_t = self.net.get_initial(inputs)
pred = self.net(inputs, e_t, v_t, i_t, t_skip=T_TOTAL-1, t_bp=1)[0][-1]
return pred
def training_step(self, batch, batch_idx):
inputs, target = batch
bs = inputs.size(0)
opt = self.optimizers()
opt.zero_grad()
loss_per_upd = []
e_t, v_t, i_t = self.net.get_initial(inputs)
t_pre = self.sampler()
for t in t_pre:
preds, e_t, v_t, i_t = self.net(inputs, e_t, v_t, i_t, t_skip=t, t_bp=T_BPTT)
loss_per_t = [metrics.LAP_loss(p, target, n=min(N_RAY, bs)).mean(0) for p in preds]
loss = sum(loss_per_t) / T_BPTT
self.manual_backward(loss)
opt.step()
opt.zero_grad()
e_t, v_t, i_t = e_t.detach(), v_t.detach(), i_t.detach()
loss_per_upd.append(loss.detach())
with torch.no_grad():
logs = {
"loss": loss_per_t[-1],
"mae": metrics.mae_cardinality(preds[-1], target),
**{f"loss_at{i}": l for i,l in enumerate(loss_per_upd)},
}
self.log_dict({f"{k}/train":v for k,v in logs.items()})
return loss
def eval_step(self, batch, batch_idx):
inputs, target = batch
pred = self(inputs)
loss = metrics.LAP_loss(pred, target, n=min(N_RAY, inputs.size(0)))
logs = {
"loss": loss.mean(0),
"f1": metrics.f1_score(target, pred, type="ind", d_feats=D_FEATS).mean(0),
"precision": metrics.precision(target, pred, type="ind", d_feats=D_FEATS).mean(0),
"recall": metrics.recall(target, pred, type="ind", d_feats=D_FEATS).mean(0),
"mae": metrics.mae_cardinality(pred, target)
}
return logs
def validation_step(self, batch, batch_idx):
logs = self.eval_step(batch, batch_idx)
self.log_dict({f"{k}/val":v for k,v in logs.items()})
return logs["loss"]
def test_step(self, batch, batch_idx):
logs = self.eval_step(batch, batch_idx)
self.log_dict({f"{k}/test":v for k,v in logs.items()})
return logs["loss"]
def configure_optimizers(self):
parameters = filter(lambda p: p.requires_grad, self.parameters())
optimizer = torch.optim.Adam(parameters, lr=LR)
return optimizer
#%%
trainloader = get_ch_dl("train", BATCH_SIZE, N_POINTS, D_FEATS, unit_norm=UNIT_NORM, add_indicator=True)
print(f"Train Dataset with max_facets={trainloader.dataset.max_facets}")
valloader = get_ch_dl("validation", BATCH_SIZE, N_POINTS, D_FEATS, unit_norm=UNIT_NORM, add_indicator=True)
print(f"Val Dataset with max_facets={valloader.dataset.max_facets}")
model = IRModel(trainloader.dataset.max_facets)
#%%
data_type = "spherical" if UNIT_NORM else "normal"
wandb.init(
settings=wandb.Settings(start_method='spawn'),
name=f"RPH P{N_POINTS[0]}to{N_POINTS[-1]} S{SEED} N_BPTT{N_BPTT} T_BPTT{T_BPTT} T_TOTAL{T_TOTAL}",
project=f"log_convex_hull_{data_type}",
reinit=False,
)
logger = WandbLogger(
log_model=True,
)
checkpoint_callback = ModelCheckpoint(
monitor='f1/val',
mode='max',
)
trainer = pl.Trainer(
max_epochs=N_EPOCHS,
gpus=1,
logger=logger,
callbacks=[checkpoint_callback])
#%%
trainer.fit(model, trainloader, valloader)
#%%
testloader = get_ch_dl("test", BATCH_SIZE, N_POINTS, D_FEATS, unit_norm=UNIT_NORM, add_indicator=True)
print(f"Test Dataset with max_facets={testloader.dataset.max_facets}")
trainer.test(test_dataloaders=testloader)