This repository contains the code for reproducing the experiments described in Recurrently Predicting Hypergraphs by David Zhang, Gertjan Burghouts and Cees Snoek.
Install environment with conda and pip:
conda create -n RPH python=3.9
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install uproot==3.12.0
pip install https://ray-wheels.s3-us-west-2.amazonaws.com/python3.9/a902f2e4ab0a9c27ece8562084aa3fc4be68eeb8/ray-1.2.0.dev0-cp39-cp39-manylinux2014_x86_64.whl
pip install numpy scipy pandas sklearn pytorch-lightning wandb
Follow the data setup described in https://github.com/hadarser/SetToGraphPaper.
Specify the data directory in particle_partitioning_main.py
and particle_partitioning_baseline.py
.
Adapt the TYPE
variable to either slot_attention
or set_transformer
to run the baselines.
Both scripts are meant to be run without any additional command line arguments.
All hyperparameters are specified in the python scripts directly.
Run python convex_hull_main.py
for RPH and python convex_hull_baseline.py
for the baselines.
The ablations can be run by setting the hyperparameters in convex_hull_main.py
accordingly.
Run python delaunay_main.py
.