-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdelaunay_main.py
135 lines (117 loc) · 3.81 KB
/
delaunay_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#%%
from pathlib import Path
import ray
import torch
import torch.nn.functional as F
import pytorch_lightning as pl
from numpy.random import default_rng
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
import wandb
import misc
import metrics
from graph_refiner import IterativeRefiner
from delaunay_data import get_dt_dl
# Dataset
D_FEATS = 2
N_POINTS = torch.arange(20,81)
# Model hyperparameter
D_HID = 256
# Training hyperparameter
N_BPTT = 4
T_BPTT = 4
T_TOTAL = 32
BATCH_SIZE = 64
LR = 0.0003
N_EPOCHS = 100
# Miscellaneous
SEED = 123456
RNG = default_rng(SEED)
pl.seed_everything(SEED)
class IRModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.net = IterativeRefiner(D_FEATS, D_HID, T_TOTAL)
self.automatic_optimization = False
self.sampler = misc.IntegerPartitionSampler(T_TOTAL-T_BPTT*N_BPTT, N_BPTT, RNG)
def forward(self, inputs):
v_t, i_t = self.net.get_initial(inputs)
pred = self.net(inputs, v_t, i_t, t_skip=T_BPTT-1, t_bp=1)[0][-1]
return pred
def training_step(self, batch, batch_idx):
inputs, target = batch
opt = self.optimizers()
opt.zero_grad()
loss_per_upd = []
v_t, i_t = self.net.get_initial(inputs)
t_pre = self.sampler()
for i, t in enumerate(t_pre):
preds, v_t, i_t = self.net(inputs, v_t, i_t, t_skip=t, t_bp=T_BPTT)
loss_per_t = [F.binary_cross_entropy(p, target).mean(0) for p in preds]
loss = sum(loss_per_t) / T_BPTT
self.manual_backward(loss)
opt.step()
opt.zero_grad()
v_t, i_t = v_t.detach(), i_t.detach()
loss_per_upd.append(loss.detach())
with torch.no_grad():
logs = {
"loss": loss_per_t[-1],
"mae": metrics.mae_cardinality(preds[-1], target),
**{f"loss_at{i}": l for i,l in enumerate(loss_per_upd)},
}
self.log_dict({f"{k}/train":v for k,v in logs.items()})
return logs
def eval_step(self, batch, batch_idx):
inputs, target = batch
pred = self(inputs)
loss = F.binary_cross_entropy(pred, target)
acc, f1, prec, rec = metrics.delaunay_adj_metrics(target, pred)
logs = {
"loss": loss.mean(0),
"accuracy": acc.mean(0),
"f1": f1.mean(0),
"precision": prec.mean(0),
"recall": rec.mean(0),
}
return logs
def validation_step(self, batch, batch_idx):
logs = self.eval_step(batch, batch_idx)
self.log_dict({f"{k}/val":v for k,v in logs.items()})
return logs
def test_step(self, batch, batch_idx):
logs = self.eval_step(batch, batch_idx)
self.log_dict({f"{k}/test":v for k,v in logs.items()})
return logs
def configure_optimizers(self):
parameters = filter(lambda p: p.requires_grad, self.parameters())
optimizer = torch.optim.Adam(parameters, lr=LR)
return optimizer
#%%
trainloader = get_dt_dl("train", BATCH_SIZE, N_POINTS, D_FEATS)
valloader = get_dt_dl("validation", BATCH_SIZE, N_POINTS, D_FEATS)
model = IRModel()
# %%
wandb.init(
settings=wandb.Settings(start_method='spawn'),
name=f"RPH P{N_POINTS[0]}to{N_POINTS[-1]} S{SEED} N_BPTT{N_BPTT} T_BPTT{T_BPTT} T_TOTAL{T_TOTAL}",
project="log_delaunay_triangulation",
reinit=False,
)
logger = WandbLogger(
log_model=True,
)
checkpoint_callback = ModelCheckpoint(
monitor='f1/val',
mode='max',
)
trainer = pl.Trainer(
max_epochs=N_EPOCHS,
gpus=1,
logger=logger,
callbacks=[checkpoint_callback])
#%%
trainer.fit(model, trainloader, valloader)
# %%
testloader = get_dt_dl("test", BATCH_SIZE, N_POINTS, D_FEATS)
trainer.test(test_dataloaders=testloader)