-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpartitioning_main.py
159 lines (137 loc) · 4.97 KB
/
partitioning_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#%%
from pathlib import Path
import ray
import torch
import pytorch_lightning as pl
import wandb
from numpy.random import default_rng
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
import misc
import metrics
import partitioning_data
import partitioning_eval
from hypergraph_refiner import IterativeRefiner
# Dataset
D_FEATS = 10
MAX_EDGES = 10
# Model hyperparameter
D_HID = 128
# Training hyperparameter
N_BPTT = 2
T_BPTT = 4
T_TOTAL = 16
BATCH_SIZE = 2048
LR = 0.0003
N_EPOCHS = 400
# Miscellaneous
SEED = 123456
RNG = default_rng(SEED)
pl.seed_everything(SEED)
N_RAY = 10
if N_RAY > 0:
ray.init(num_cpus=N_RAY,include_dashboard=False)
class IRModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.net = IterativeRefiner(MAX_EDGES, D_FEATS, D_HID, T_TOTAL)
self.sampler = misc.IntegerPartitionSampler(T_TOTAL-T_BPTT*N_BPTT, N_BPTT, RNG)
self.automatic_optimization = False
def forward(self, inputs):
e_t, v_t, i_t = self.net.get_initial(inputs)
pred = self.net(inputs, e_t, v_t, i_t, t_skip=T_TOTAL-1, t_bp=1)[0][-1]
return pred
def training_step(self, batch, batch_idx):
inputs, _, target = batch
target = torch.cat([target, target.bool().any(-1, keepdim=True).float()], dim=-1)
bs = inputs.size(0)
opt = self.optimizers()
opt.zero_grad()
loss_per_upd = []
e_t, v_t, i_t = self.net.get_initial(inputs)
t_pre = self.sampler()
for t in t_pre:
preds, e_t, v_t, i_t = self.net(inputs, e_t, v_t, i_t, t_skip=t, t_bp=T_BPTT)
preds = torch.cat(preds, dim=0)
targets = target.repeat(T_BPTT, 1, 1)
loss_per_t = metrics.LAP_loss(
preds,
targets,
n=min(N_RAY, bs))
loss_inc = loss_per_t.mean(0)
preds = preds.clamp(0,1)
pred_adj = torch.bmm(preds[...,:-1].transpose(1,2), preds[...,:-1])
target_adj = torch.bmm(targets[...,:-1].transpose(1,2), targets[...,:-1])
f1 = metrics.f1_score(target_adj, pred_adj, type="adj")
loss = loss_inc - f1.mean(0)
self.manual_backward(loss)
opt.step()
opt.zero_grad()
e_t, v_t, i_t = e_t.detach(), v_t.detach(), i_t.detach()
loss_per_upd.append(loss.detach())
with torch.no_grad():
logs = {
"loss": loss_per_t[-bs:].mean(0),
"mae": metrics.mae_cardinality(preds[-bs:], target),
"f1": f1[-bs:].mean(0),
**{f"loss_at{i}": l for i,l in enumerate(loss_per_upd)},
}
self.log_dict({f"{k}/train":v for k,v in logs.items()})
return loss
def eval_step(self, batch, batch_idx):
inputs, _, target = batch
target = torch.cat([target, target.bool().any(-1, keepdim=True).float()], dim=-1)
pred = self(inputs)
target_adj = torch.bmm(target[...,:-1].transpose(1,2), target[...,:-1])
pred_adj = torch.bmm(pred[...,:-1].transpose(1,2), pred[...,:-1])
logs = {
"loss": metrics.LAP_loss(pred, target, n=min(N_RAY, inputs.size(0))).mean(0),
"f1": metrics.f1_score(target_adj, pred_adj, type="adj").mean(0),
"precision": metrics.precision(target_adj, pred_adj, type="adj").mean(0),
"recall": metrics.recall(target_adj, pred_adj, type="adj").mean(0),
"mae": metrics.mae_cardinality(pred, target),
}
return logs
def validation_step(self, batch, batch_idx):
logs = self.eval_step(batch, batch_idx)
self.log_dict({f"{k}/val":v for k,v in logs.items()})
return logs["loss"]
def test_step(self, batch, batch_idx):
logs = self.eval_step(batch, batch_idx)
self.log_dict({f"{k}/test":v for k,v in logs.items()})
return logs["loss"]
def configure_optimizers(self):
parameters = filter(lambda p: p.requires_grad, self.parameters())
optimizer = torch.optim.Adam(parameters, lr=LR)
return optimizer
#%%
debug_load = False
trainloader = partitioning_data.get_data_loader("train", BATCH_SIZE, debug_load=debug_load)
valloader = partitioning_data.get_data_loader("validation", BATCH_SIZE, debug_load=debug_load)
model = IRModel()
# %%
wandb.init(
name=f"RPH S{SEED} N_BPTT{N_BPTT} T_BPTT{T_BPTT} T_TOTAL{T_TOTAL}",
project="particle_partition",
reinit=False,
settings=wandb.Settings(start_method="fork"),
)
logger = WandbLogger(
log_model=True,
)
checkpoint_callback_loss = ModelCheckpoint(
monitor='loss/val',
mode='min',
)
trainer = pl.Trainer(
max_epochs=N_EPOCHS,
gpus=1,
logger=logger,
callbacks=[checkpoint_callback_loss])
#%%
trainer.fit(model, trainloader, valloader, )
#%%
testds = partitioning_data.JetGraphDataset("test", random_permutation=False)
print("Test")
model = model.cuda()
print(partitioning_eval.test_performance(model, testds))