Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixes in names #36

Open
wants to merge 15 commits into
base: main
Choose a base branch
from
5 changes: 5 additions & 0 deletions .devcontainer/devcontainer.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
{
"image": "mcr.microsoft.com/devcontainers/universal:2",
"features": {
}
}
27 changes: 27 additions & 0 deletions new-website/utils/tutorials/acknowledgement.html
Original file line number Diff line number Diff line change
Expand Up @@ -6,16 +6,43 @@
padding-right: 80px;
font-size: 50px;
}
h2 {
margin-top: 250px;
padding-right: 80px;
font-size: 20px;
}
.general {
padding-left: 80px;
padding-right: 80px;
font-size: 20px;
}
.citation {
padding-left: 80px;
padding-right: 80px;
font-size: 15px;
}
</style>
<body>
<h1>Acknowledgement</h1>
<p class='general'>
We acknowledge the DeepChem community for their contributions and support.
</p>
<p class='citation'>
<h2>Citing This Book:</h2>
<br>
@manual{
<br>
title={The DeepChem Book},
<br>
organization={DeepChem},
<br>
author={Ramsundar, Bharath and DeepChem Community},
<br>
howpublished = {\url{https://deepchem.io/tutorials}},
<br>
year={2024},
<br>
}
</p>
</body>
</html>
2 changes: 0 additions & 2 deletions new-website/utils/tutorials/acknowledgement.md

This file was deleted.

13 changes: 8 additions & 5 deletions new-website/utils/tutorials/build_pdf_book.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,10 @@ def html_to_pdf():
chapter = pd.read_csv(INFO_PATH + "-".join(i))
for j in chapter["File Name"]:
print(i, j)
pdfkit.from_file(DATA_PATH + j[:-5] + "html", PDF_PATH + j[:-5] + "pdf")
try:
pdfkit.from_file(DATA_PATH + j[:-5] + "html", PDF_PATH + j[:-5] + "pdf")
except:
pass

def merge_pdf():
"""Merges the compiled PDFs."""
Expand Down Expand Up @@ -86,8 +89,8 @@ def compile_information_pages():
pdfkit.from_file('acknowledgement.html', 'storage/acknowledgement.pdf')

if __name__ == "__main__":
os.system("mkdir " + PDF_PATH)
html_to_pdf()
#os.system("mkdir " + PDF_PATH)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Remove cruft

#html_to_pdf()
merge_pdf()
compile_information_pages()
merge_pdf_pages(['storage/title.pdf', 'storage/acknowledgement.pdf', 'storage/contents.pdf', 'storage/full_pdf.pdf'])
#compile_information_pages()
#merge_pdf_pages(['storage/title.pdf', 'storage/acknowledgement.pdf', 'storage/contents.pdf', 'storage/full_pdf.pdf'])
66 changes: 31 additions & 35 deletions new-website/utils/tutorials/contents.html
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ <h2>1. Introduction To Deepchem</h2>
<li>The Basic Tools of the Deep Life Sciences</li>
<li>Working With Datasets</li>
<li>An Introduction To MoleculeNet</li>
<li>Molecular Fingerprints</li>
<li>Molecular Fingerprints: Representing Molecules for Deep-Learning</li>
<li>Creating Models with TensorFlow and PyTorch</li>
<li>Introduction to Graph Convolutions</li>
<li>Going Deeper on Molecular Featurizations</li>
Expand All @@ -33,89 +33,85 @@ <h2>1. Introduction To Deepchem</h2>
<li>Training a Generative Adversarial Network on MNIST</li>
<li>Advanced model training using hyperopt</li>
<li>Introduction to Gaussian Processes</li>
<li>PytorchLightning Integration</li>
<li>Pytorch Lightning Integration for DeepChem Models</li>
</ol>
</li>
<li>
<h2>2. Molecular Machine Learning</h2>
<h2>2. More Molecular Machine Learning</h2>
<ol>
<li>Molecular Fingerprints
<li>Going Deeper on Molecular Featurizations
<li>Learning Unsupervised Embeddings for Molecules
<li>Atomic Contributions for Molecules
<li>Interactive Model Evaluation with Trident Chemwidgets
<li>Transfer Learning With ChemBERTa Transformers
<li>Training a Normalizing Flow on QM9
<li>Large Scale Chemical Screens
<li>Introduction to Molecular Attention Transformer
<li>Generating molecules with MolGAN
<li>Introduction to GROVER
<li>Going Deeper on Molecular Featurizations</li>
<li>Learning Unsupervised Embeddings for Molecules</li>
<li>Atomic Contributions for Molecules</li>
<li>Interactive Model Evaluation with Trident Chemwidgets</li>
<li>Transfer Learning With ChemBERTa Transformers</li>
<li>Training a Normalizing Flow on QM9</li>
<li>Large Scale Chemical Screens</li>
<li>Introduction to Molecular Attention Transformer</li>
<li>Generating molecules with MolGAN</li>
<li>Introduction to GROVER</li>
</ol>
</li>
<li>
<h2>3. Modeling Proteins</h2>
<ol>
<li>Protein Deep Learning
<li>Protein Deep Learning</li>
</ol>
</li>
<li>
<h2>4. Protein Ligand Modeling</h2>
<ol>
<li>Modeling Protein Ligand Interactions
<li>Modeling Protein Ligand Interactions With Atomic Convolutions
<li>DeepChemXAlphafold
<li>Modeling Protein Ligand Interactions</li>
<li>Applications of DeepChem with Alphafold: Docking and protein-ligand interaction from protein sequence</li>
</ol>
</li>
<li>
<h2>5. Quantum Chemistry</h2>
<ol>
<li>Exploring Quantum Chemistry with GDB1k
<li>DeepQMC tutorial
<li>Training an Exchange Correlation Functional using Deepchem
<li>Exploring Quantum Chemistry with GDB1k</li>
<li>DeepQMC integration with DeepChem tutorial</li>
<li>Training an Exchange Correlation Functional using Deepchem</li>
</ol>
</li>
<li>
<h2>6. Bioinformatics</h2>
<ol>
<li>Introduction to Bioinformatics
<li>Multisequence Alignments
<li>Deep probabilistic analysis of single-cell omics data
<li>Introduction to Bioinformatics</li>
<li>Multisequence Alignments</li>
<li>Deep probabilistic analysis of single-cell omics data</li>
</ol>
</li>
<li>
<h2>7. Material Sciences</h2>
<ol>
<li>Introduction To Material Science
<li>Introduction To Material Science</li>
</ol>
</li>
<li>
<h2>8. Machine Learning Methods</h2>
<ol>
<li>Using Reinforcement Learning to Play Pong
<li>Introduction to Model Interpretability
<li>Uncertainty In Deep Learning
<li>Using Reinforcement Learning to Play Pong</li>
<li>Introduction to Model Interpretability</li>
<li>Uncertainty In Deep Learning</li>
</ol>
</li>
<li>
<h2>9. Deep Differential Equations</h2>
<ol>
<li>Physics Informed Neural Networks
<li>Introducing JaxModel and PINNModel
<li>About Neural ODE : Using Torchdiffeq with Deepchem
<li>Physics Informed Neural Networks</li>
<li>Introducing JaxModel and PINNModel</li>
<li>About Neural ODE : Using Torchdiffeq with Deepchem</li>
</ol>
</li>
<li>
<h2>10. Equivariance</h2>
<ol>
<li>Introduction to Equivariance
<li>Modeling Protein Ligand Interactions With Atomic Convolutions
<li>DeepChemXAlphafold
<li>Introduction to Equivariance</li>
</ol>
</li>
<li>
<h2>11. Olfaction</h2>
<ol>
<li>Predict Multi Label Odor Descriptors using OpenPOM
<li>Predict Multi Label Odor Descriptors using OpenPOM</li>
</ol>
</li>
</ul>
Expand Down
71 changes: 0 additions & 71 deletions new-website/utils/tutorials/contents.md

This file was deleted.

2 changes: 1 addition & 1 deletion new-website/utils/tutorials/title.html
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
<body>
<h1>The DeepChem Book</h1>
<p class='general'>
Democratizing Deep-Learning for Drug Discovery Quantum Chemistry, Materials Science and Biology
Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology
</p>
<p class='author'>
Bharath Ramsundar
Expand Down
Loading