-
Notifications
You must be signed in to change notification settings - Fork 78
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #605 from deeppavlov/dev
Release v1.13.0
- Loading branch information
Showing
78 changed files
with
5,080 additions
and
54,987 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
FROM nvidia/cuda:12.1.1-base-ubuntu20.04 | ||
|
||
RUN apt update | ||
RUN apt install -y python3.9 | ||
RUN apt install -y git python3-pip | ||
|
||
ARG VIDEO_PRETRAINED | ||
ARG TEXT_PRETRAINED | ||
ARG MODEL_PATH | ||
ARG MULTIMODAL_MODEL | ||
ARG REDUNDANT_FEATURES | ||
|
||
ENV VIDEO_PRETRAINED=$VIDEO_PRETRAINED | ||
ENV TEXT_PRETRAINED=$TEXT_PRETRAINED | ||
ENV MULTIMODAL_MODEL=$MULTIMODAL_MODEL | ||
ENV MODEL_PATH=$MODEL_PATH | ||
ENV REDUNDANT_FEATURES=$REDUNDANT_FEATURES | ||
|
||
WORKDIR /src | ||
|
||
COPY . /src | ||
RUN mkdir /data | ||
RUN pip install -r requirements.txt | ||
|
||
RUN apt install -y ffmpeg=7:4.2.7-0ubuntu0.1 libsm6=2:1.2.3-1 libxext6=2:1.3.4-0ubuntu1 | ||
|
||
RUN pip install gdown==4.7.1 | ||
|
||
RUN git clone https://github.com/anna-a-m/MultimodalERC /data/repo && cd /data/repo && git reset --hard 84097d442b23b5a9238b5090a04e2625741314ae | ||
|
||
RUN mv -f /data/repo/* /data/ && rm -rf /data/repo | ||
|
||
RUN touch /data/multimodal_concat/__init__.py | ||
|
||
RUN apt-get install -y wget | ||
|
||
RUN wget -O models http://files.deeppavlov.ai/dream_data/emotion_detection/emotion_detection_v1.tar.gz && tar -xf models -C /data/ | ||
RUN wget -O redundant_feat http://files.deeppavlov.ai/dream_data/emotion_detection/redundant_feat.txt && mv -f redundant_feat /data/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
import sys | ||
|
||
sys.path.append("/data") | ||
sys.path.append("/data/multimodal_concat") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
pandas==1.5.3 | ||
scikit-learn==1.3.0 | ||
tqdm==4.64.1 | ||
opencv-python==4.7.0.68 | ||
opensmile==2.4.2 | ||
sentry-sdk==1.15.0 | ||
torch==1.13.1 | ||
transformers==4.31.0 | ||
fastapi==0.103.0 | ||
blinker==1.5.0 | ||
pydantic==2.3.0 | ||
numpy==1.24.4 | ||
starlette==0.27.0 | ||
uvicorn==0.23.2 | ||
Pillow==9.3.0 | ||
wandb==0.13.9 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
import logging | ||
import os | ||
import opensmile | ||
import torch | ||
import numpy as np | ||
import sentry_sdk | ||
import cv2 | ||
import aux # noqa: F401 | ||
|
||
from multimodal_concat.models import MultimodalClassificationModel, MainModel | ||
from multimodal_concat.utils import prepare_models | ||
|
||
from fastapi import FastAPI | ||
from fastapi.encoders import jsonable_encoder | ||
from pydantic import BaseModel | ||
from starlette.middleware.cors import CORSMiddleware | ||
from transformers import AutoTokenizer, AutoProcessor | ||
from typing import List | ||
from urllib.request import urlretrieve | ||
|
||
sentry_sdk.init(dsn=os.getenv("SENTRY_DSN")) | ||
|
||
label2id = { | ||
"anger": 0, | ||
"disgust": 1, | ||
"fear": 2, | ||
"joy": 3, | ||
"neutral": 4, | ||
"sadness": 5, | ||
"surprise": 6, | ||
} | ||
num_labels = 7 | ||
text_model, video_model, audio_model = prepare_models(num_labels, os.getenv("MODEL_PATH")) | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
def sample_frame_indices(seg_len, clip_len=16, frame_sample_rate=4, mode="video"): | ||
converted_len = int(clip_len * frame_sample_rate) | ||
converted_len = min(converted_len, seg_len - 1) | ||
end_idx = np.random.randint(converted_len, seg_len) | ||
start_idx = end_idx - converted_len | ||
if mode == "video": | ||
indices = np.linspace(start_idx, end_idx, num=clip_len) | ||
else: | ||
indices = np.linspace(start_idx, end_idx, num=clip_len * frame_sample_rate) | ||
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) | ||
return indices | ||
|
||
|
||
def get_frames( | ||
file_path, | ||
clip_len=16, | ||
): | ||
cap = cv2.VideoCapture(file_path) | ||
v_len = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | ||
indices = sample_frame_indices(v_len) | ||
|
||
frames = [] | ||
for fn in range(v_len): | ||
success, frame = cap.read() | ||
if success is False: | ||
continue | ||
if fn in indices: | ||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | ||
res = cv2.resize(frame, dsize=(224, 224), interpolation=cv2.INTER_CUBIC) | ||
frames.append(res) | ||
cap.release() | ||
|
||
if len(frames) < clip_len: | ||
add_num = clip_len - len(frames) | ||
frames_to_add = [frames[-1]] * add_num | ||
frames.extend(frames_to_add) | ||
|
||
return frames | ||
|
||
|
||
def create_final_model(): | ||
multi_model = MultimodalClassificationModel( | ||
text_model, | ||
video_model, | ||
audio_model, | ||
num_labels, | ||
input_size=4885, | ||
hidden_size=512, | ||
) | ||
checkpoint = torch.load(os.getenv("MULTIMODAL_MODEL")) | ||
multi_model.load_state_dict(checkpoint) | ||
|
||
device = "cuda" | ||
return MainModel(multi_model, device=device) | ||
|
||
|
||
def process_text(input_tokens: str): | ||
text_model_name = os.getenv("TEXT_PRETRAINED") | ||
logger.info(f"{text_model_name}") | ||
tokenizer = AutoTokenizer.from_pretrained(text_model_name) | ||
|
||
return tokenizer( | ||
input_tokens, | ||
padding="max_length", | ||
truncation=True, | ||
max_length=128, | ||
return_tensors="pt", | ||
) | ||
|
||
|
||
def process_video(video_path: str): | ||
video_frames = get_frames(video_path) | ||
|
||
video_model_name = os.getenv("VIDEO_PRETRAINED") | ||
video_feature_extractor = AutoProcessor.from_pretrained(video_model_name) | ||
|
||
return video_feature_extractor(videos=video_frames, return_tensors="pt") | ||
|
||
|
||
def process_audio(file_path: str): | ||
smile = opensmile.Smile( | ||
opensmile.FeatureSet.ComParE_2016, | ||
opensmile.FeatureLevel.Functionals, | ||
sampling_rate=16000, | ||
resample=True, | ||
num_workers=5, | ||
verbose=True, | ||
) | ||
|
||
redundant_features = os.getenv("REDUNDANT_FEATURES") | ||
with open(redundant_features, "r") as features_file: | ||
redundant_features_list = features_file.read().split(",") | ||
|
||
audio_features = smile.process_files([file_path]) | ||
audio_features = audio_features.drop(columns=redundant_features_list, inplace=False) | ||
return audio_features.values.reshape(audio_features.shape[0], 1, audio_features.shape[1]) | ||
|
||
|
||
def inference(text: str, video_path: str): | ||
text_encoding = process_text(text) | ||
video_encoding = process_video(video_path) | ||
audio_features = process_audio(video_path) | ||
batch = { | ||
"text": text_encoding, | ||
"video": video_encoding, | ||
"audio": audio_features, | ||
"label": None, | ||
} | ||
label = final_model(batch) | ||
id2label = {v: k for k, v in label2id.items()} | ||
return id2label[int(label.detach().cpu())] | ||
|
||
|
||
def predict_emotion(text: str, video_path: str): | ||
try: | ||
logger.warning(f"{inference(text, video_path)}") | ||
return inference(text, video_path) | ||
except Exception as e: | ||
sentry_sdk.capture_exception(e) | ||
raise e | ||
|
||
|
||
final_model = create_final_model() | ||
|
||
|
||
class EmotionsPayload(BaseModel): | ||
personality: List[str] | ||
video_path: List[str] | ||
|
||
|
||
def subinfer(msg_text: str, video_path: str): | ||
emotion = "Emotion detection unsuccessfull. An error occured during inference." | ||
filepath = "undefined" | ||
try: | ||
filename = video_path.split("=")[-1] | ||
filepath = f"/data/{filename}" | ||
urlretrieve(video_path, filepath) | ||
if not os.path.exists(filepath): | ||
raise ValueError(f"Failed to retrieve videofile from {filepath}") | ||
emotion = predict_emotion(msg_text + " ", filepath) | ||
logger.info(f"Detected emotion: {jsonable_encoder(emotion)}") | ||
except Exception as e: | ||
raise ValueError(f"The message format is correct, but: {e}") | ||
|
||
return emotion | ||
|
||
|
||
app = FastAPI() | ||
app.add_middleware( | ||
CORSMiddleware, | ||
allow_origins=["*"], | ||
allow_credentials=True, | ||
allow_methods=["*"], | ||
allow_headers=["*"], | ||
) | ||
|
||
|
||
@app.post("/model") | ||
def infer(payload: EmotionsPayload): | ||
logger.info(f"Emotion Detection: {payload}") | ||
emotion = [subinfer(p[0], p[1]) for p in zip(payload.personality, payload.video_path)] | ||
return jsonable_encoder(emotion) |
9 changes: 9 additions & 0 deletions
9
annotators/emotion_detection/service_configs/emotion-detection/environment.yml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
SERVICE_PORT: 8040 | ||
SERVICE_NAME: emotion_detection | ||
CUDA_VISIBLE_DEVICES: 0 | ||
VIDEO_PRETRAINED: "microsoft/xclip-base-patch32" | ||
EXT_PRETRAINED: "bert-large-uncased" | ||
MULTIMODAL_MODEL: "final_model.pt" | ||
REDUNDANT_FEATURES: "redundant_features.txt" | ||
MODEL_PATH: "/data/" | ||
PREFIX: "Detect emotions:" |
29 changes: 29 additions & 0 deletions
29
annotators/emotion_detection/service_configs/emotion-detection/service.yml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
name: emotion-detection | ||
endpoints: | ||
- model | ||
compose: | ||
env_file: | ||
- .env | ||
build: | ||
args: | ||
SERVICE_PORT: 8040 | ||
SERVICE_NAME: emotion_detection | ||
VIDEO_PRETRAINED: "microsoft/xclip-base-patch32" | ||
TEXT_PRETRAINED: "bert-large-uncased" | ||
MULTIMODAL_MODEL: "final_model.pt" | ||
REDUNDANT_FEATURES: "redundant_features.txt" | ||
MODEL_PATH: "/data/" | ||
PREFIX: "Detect emotions:" | ||
context: . | ||
dockerfile: ./annotators/emotion_detection/Dockerfile | ||
command: uvicorn server:app --host 0.0.0.0 --port 8040 | ||
deploy: | ||
resources: | ||
limits: | ||
memory: 1G | ||
reservations: | ||
memory: 1G | ||
environment: | ||
- CUDA_VISIBLE_DEVICES=0 | ||
ports: | ||
- 8040:8040 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,4 @@ | ||
scikit-learn==0.22.1 | ||
plotly==4.14.3 | ||
pandas==1.2.4 | ||
uvicorn==0.13.4 | ||
fastapi==0.65.1 | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.