-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: metadata extractor based on a LLM (#92)
* initial import * adding tests * adding docstrings * handlint liting * fixing tests * improving live run test * fixing docstring * fixing tests * fixing tests * fixing tests * fixing tests * PR reviews/comments * linting * fixing some tests * using renamed util function * adding dependencies for tests * fixing generators dependencies * fixing types * reverting function name until PR is merged on haystack core * reverting function name until PR is merged on haystack core * fixing serialization tests * adding pydocs * Update docs/pydoc/config/extractors_api.yml Co-authored-by: Daria Fokina <[email protected]> * Update docs/pydoc/config/extractors_api.yml Co-authored-by: Daria Fokina <[email protected]> * refactoring handling the supported LLMs * missing comma in init * fixing README * fixing README * chaning sede approach, saving all the related LLM params * reverting example notebooks * forcing OpenAI model version in tests * disabling too-many-arguments for class * Update haystack_experimental/components/extractors/llm_metadata_extractor.py Co-authored-by: Sebastian Husch Lee <[email protected]> * adding check prompt to init * updating tests * Update README.md Co-authored-by: Madeesh Kannan <[email protected]> * Update haystack_experimental/components/extractors/llm_metadata_extractor.py Co-authored-by: Madeesh Kannan <[email protected]> * Update haystack_experimental/components/extractors/llm_metadata_extractor.py Co-authored-by: Madeesh Kannan <[email protected]> * Update haystack_experimental/components/extractors/llm_metadata_extractor.py Co-authored-by: Madeesh Kannan <[email protected]> * fixes * fixing linted files * fixing * removing tuples from the output two aligned lists * removed unused import * chaning errors to a dictionary * ... * fixing LLMProvider * Update haystack_experimental/components/extractors/llm_metadata_extractor.py Co-authored-by: Madeesh Kannan <[email protected]> * more fixes * fixing linting issue --------- Co-authored-by: Daria Fokina <[email protected]> Co-authored-by: Sebastian Husch Lee <[email protected]> Co-authored-by: Madeesh Kannan <[email protected]>
- Loading branch information
1 parent
186536b
commit 50ce5fd
Showing
8 changed files
with
475 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
loaders: | ||
- type: haystack_pydoc_tools.loaders.CustomPythonLoader | ||
search_path: [../../../] | ||
modules: ["haystack_experimental.components.extractors.llm_metadata_extractor"] | ||
ignore_when_discovered: ["__init__"] | ||
processors: | ||
- type: filter | ||
expression: | ||
documented_only: true | ||
do_not_filter_modules: false | ||
skip_empty_modules: true | ||
- type: smart | ||
- type: crossref | ||
renderer: | ||
type: haystack_pydoc_tools.renderers.ReadmeCoreRenderer | ||
excerpt: Extracting information from documents. | ||
category_slug: experiments-api | ||
title: Extractors | ||
slug: experimental-generators-api | ||
order: 50 | ||
markdown: | ||
descriptive_class_title: false | ||
classdef_code_block: false | ||
descriptive_module_title: true | ||
add_method_class_prefix: true | ||
add_member_class_prefix: false | ||
filename: experimental_extractors.md |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
# SPDX-FileCopyrightText: 2022-present deepset GmbH <[email protected]> | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from haystack_experimental.components.extractors.llm_metadata_extractor import LLMMetadataExtractor, LLMProvider | ||
|
||
_all_ = ["LLMMetadataExtractor", "LLMProvider"] |
267 changes: 267 additions & 0 deletions
267
haystack_experimental/components/extractors/llm_metadata_extractor.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,267 @@ | ||
# SPDX-FileCopyrightText: 2022-present deepset GmbH <[email protected]> | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import json | ||
from enum import Enum | ||
from typing import Any, Dict, List, Optional, Union | ||
|
||
from haystack import Document, component, default_from_dict, default_to_dict, logging | ||
from haystack.components.builders import PromptBuilder | ||
from haystack.components.generators import AzureOpenAIGenerator, OpenAIGenerator | ||
from haystack.lazy_imports import LazyImport | ||
from haystack.utils import deserialize_secrets_inplace | ||
|
||
with LazyImport(message="Run 'pip install \"amazon-bedrock-haystack==1.0.2\"'") as amazon_bedrock_generator: | ||
from haystack_integrations.components.generators.amazon_bedrock import AmazonBedrockGenerator | ||
|
||
with LazyImport(message="Run 'pip install \"google-vertex-haystack==2.0.0\"'") as vertex_ai_gemini_generator: | ||
from haystack_integrations.components.generators.google_vertex import VertexAIGeminiGenerator | ||
|
||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class LLMProvider(Enum): | ||
""" | ||
Currently LLM providers supported by `LLMMetadataExtractor`. | ||
""" | ||
|
||
OPENAI = "openai" | ||
OPENAI_AZURE = "openai_azure" | ||
AWS_BEDROCK = "aws_bedrock" | ||
GOOGLE_VERTEX = "google_vertex" | ||
|
||
@staticmethod | ||
def from_str(string: str) -> "LLMProvider": | ||
""" | ||
Convert a string to a LLMProvider enum. | ||
""" | ||
provider_map = {e.value: e for e in LLMProvider} | ||
provider = provider_map.get(string) | ||
if provider is None: | ||
msg = ( | ||
f"Invalid LLMProvider '{string}'" | ||
f"Supported LLMProviders are: {list(provider_map.keys())}" | ||
) | ||
raise ValueError(msg) | ||
return provider | ||
|
||
|
||
@component | ||
class LLMMetadataExtractor: | ||
""" | ||
Extracts metadata from documents using a Large Language Model (LLM) from OpenAI. | ||
The metadata is extracted by providing a prompt to n LLM that generates the metadata. | ||
```python | ||
from haystack import Document | ||
from haystack.components.generators import OpenAIGenerator | ||
from haystack_experimental.components.extractors import LLMMetadataExtractor | ||
NER_PROMPT = ''' | ||
-Goal- | ||
Given text and a list of entity types, identify all entities of those types from the text. | ||
-Steps- | ||
1. Identify all entities. For each identified entity, extract the following information: | ||
- entity_name: Name of the entity, capitalized | ||
- entity_type: One of the following types: [organization, product, service, industry] | ||
Format each entity as {"entity": <entity_name>, "entity_type": <entity_type>} | ||
2. Return output in a single list with all the entities identified in steps 1. | ||
-Examples- | ||
###################### | ||
Example 1: | ||
entity_types: [organization, person, partnership, financial metric, product, service, industry, investment strategy, market trend] | ||
text: | ||
Another area of strength is our co-brand issuance. Visa is the primary network partner for eight of the top 10 co-brand partnerships in the US today and we are pleased that Visa has finalized a multi-year extension of our successful credit co-branded partnership with Alaska Airlines, a portfolio that benefits from a loyal customer base and high cross-border usage. | ||
We have also had significant co-brand momentum in CEMEA. First, we launched a new co-brand card in partnership with Qatar Airways, British Airways and the National Bank of Kuwait. Second, we expanded our strong global Marriott relationship to launch Qatar's first hospitality co-branded card with Qatar Islamic Bank. Across the United Arab Emirates, we now have exclusive agreements with all the leading airlines marked by a recent agreement with Emirates Skywards. | ||
And we also signed an inaugural Airline co-brand agreement in Morocco with Royal Air Maroc. Now newer digital issuers are equally | ||
------------------------ | ||
output: | ||
{"entities": [{"entity": "Visa", "entity_type": "company"}, {"entity": "Alaska Airlines", "entity_type": "company"}, {"entity": "Qatar Airways", "entity_type": "company"}, {"entity": "British Airways", "entity_type": "company"}, {"entity": "National Bank of Kuwait", "entity_type": "company"}, {"entity": "Marriott", "entity_type": "company"}, {"entity": "Qatar Islamic Bank", "entity_type": "company"}, {"entity": "Emirates Skywards", "entity_type": "company"}, {"entity": "Royal Air Maroc", "entity_type": "company"}]} | ||
############################# | ||
-Real Data- | ||
###################### | ||
entity_types: [company, organization, person, country, product, service] | ||
text: {{input_text}} | ||
###################### | ||
output: | ||
''' | ||
docs = [ | ||
Document(content="deepset was founded in 2018 in Berlin, and is known for its Haystack framework"), | ||
Document(content="Hugging Face is a company founded in Paris, France and is known for its Transformers library") | ||
] | ||
extractor = LLMMetadataExtractor(prompt=NER_PROMPT, expected_keys=["entities"], generator=OpenAIGenerator(), input_text='input_text') | ||
extractor.run(documents=docs) | ||
>> {'documents': [ | ||
Document(id=.., content: 'deepset was founded in 2018 in Berlin, and is known for its Haystack framework', | ||
meta: {'entities': [{'entity': 'deepset', 'entity_type': 'company'}, {'entity': 'Berlin', 'entity_type': 'city'}, | ||
{'entity': 'Haystack', 'entity_type': 'product'}]}), | ||
Document(id=.., content: 'Hugging Face is a company founded in Paris, France and is known for its Transformers library', | ||
meta: {'entities': [ | ||
{'entity': 'Hugging Face', 'entity_type': 'company'}, {'entity': 'Paris', 'entity_type': 'city'}, | ||
{'entity': 'France', 'entity_type': 'country'}, {'entity': 'Transformers', 'entity_type': 'product'} | ||
]}) | ||
] | ||
} | ||
>> | ||
``` | ||
""" # noqa: E501 | ||
|
||
def __init__( # pylint: disable=R0917 | ||
self, | ||
prompt: str, | ||
input_text: str, | ||
expected_keys: List[str], | ||
generator_api: Union[str,LLMProvider], | ||
generator_api_params: Optional[Dict[str, Any]] = None, | ||
raise_on_failure: bool = False, | ||
): | ||
""" | ||
Initializes the LLMMetadataExtractor. | ||
:param prompt: The prompt to be used for the LLM. | ||
:param input_text: The input text to be processed by the PromptBuilder. | ||
:param expected_keys: The keys expected in the JSON output from the LLM. | ||
:param generator_api: The API provider for the LLM. | ||
:param generator_api_params: The parameters for the LLM generator. | ||
:param raise_on_failure: Whether to raise an error on failure to validate JSON output. | ||
:returns: | ||
""" | ||
self.prompt = prompt | ||
self.input_text = input_text | ||
self.builder = PromptBuilder(prompt, required_variables=[input_text]) | ||
self.raise_on_failure = raise_on_failure | ||
self.expected_keys = expected_keys | ||
self.generator_api = generator_api if isinstance(generator_api, LLMProvider)\ | ||
else LLMProvider.from_str(generator_api) | ||
self.generator_api_params = generator_api_params or {} | ||
self.llm_provider = self._init_generator(self.generator_api, self.generator_api_params) | ||
if self.input_text not in self.prompt: | ||
raise ValueError(f"Input text '{self.input_text}' must be in the prompt.") | ||
|
||
@staticmethod | ||
def _init_generator( | ||
generator_api: LLMProvider, | ||
generator_api_params: Optional[Dict[str, Any]] | ||
) -> Union[OpenAIGenerator, AzureOpenAIGenerator, AmazonBedrockGenerator, VertexAIGeminiGenerator]: | ||
""" | ||
Initialize the chat generator based on the specified API provider and parameters. | ||
""" | ||
if generator_api == LLMProvider.OPENAI: | ||
return OpenAIGenerator(**generator_api_params) | ||
if generator_api == LLMProvider.OPENAI_AZURE: | ||
return AzureOpenAIGenerator(**generator_api_params) | ||
if generator_api == LLMProvider.AWS_BEDROCK: | ||
amazon_bedrock_generator.check() | ||
return AmazonBedrockGenerator(**generator_api_params) | ||
if generator_api == LLMProvider.GOOGLE_VERTEX: | ||
vertex_ai_gemini_generator.check() | ||
return VertexAIGeminiGenerator(**generator_api_params) | ||
raise ValueError(f"Unsupported generator API: {generator_api}") | ||
|
||
def is_valid_json_and_has_expected_keys(self, expected: List[str], received: str) -> bool: | ||
""" | ||
Output must be a valid JSON with the expected keys. | ||
:param expected: | ||
Names of expected outputs | ||
:param received: | ||
Names of received outputs | ||
:raises ValueError: | ||
If the output is not a valid JSON with the expected keys: | ||
- with `raise_on_failure` set to True a ValueError is raised. | ||
- with `raise_on_failure` set to False a warning is issued and False is returned. | ||
:returns: | ||
True if the received output is a valid JSON with the expected keys, False otherwise. | ||
""" | ||
try: | ||
parsed_output = json.loads(received) | ||
except json.JSONDecodeError: | ||
msg = "Response from LLM is not a valid JSON." | ||
if self.raise_on_failure: | ||
raise ValueError(msg) | ||
logger.warning(msg) | ||
return False | ||
|
||
if not all(output in parsed_output for output in expected): | ||
msg = f"Expected response from LLM to be a JSON with keys {expected}, got {received}." | ||
if self.raise_on_failure: | ||
raise ValueError(msg) | ||
logger.warning(msg) | ||
return False | ||
|
||
return True | ||
|
||
def to_dict(self) -> Dict[str, Any]: | ||
""" | ||
Serializes the component to a dictionary. | ||
:returns: | ||
Dictionary with serialized data. | ||
""" | ||
|
||
llm_provider = self.llm_provider.to_dict() | ||
|
||
return default_to_dict( | ||
self, | ||
prompt=self.prompt, | ||
input_text=self.input_text, | ||
expected_keys=self.expected_keys, | ||
raise_on_failure=self.raise_on_failure, | ||
generator_api=self.generator_api.value, | ||
generator_api_params=llm_provider["init_parameters"], | ||
) | ||
|
||
@classmethod | ||
def from_dict(cls, data: Dict[str, Any]) -> "LLMMetadataExtractor": | ||
""" | ||
Deserializes the component from a dictionary. | ||
:param data: | ||
Dictionary with serialized data. | ||
:returns: | ||
An instance of the component. | ||
""" | ||
|
||
init_parameters = data.get("init_parameters", {}) | ||
if "generator_api" in init_parameters: | ||
data["init_parameters"]["generator_api"] = LLMProvider.from_str(data["init_parameters"]["generator_api"]) | ||
if "generator_api_params" in init_parameters: | ||
deserialize_secrets_inplace(data["init_parameters"]["generator_api_params"], keys=["api_key"]) | ||
return default_from_dict(cls, data) | ||
|
||
|
||
@component.output_types(documents=List[Document], errors=Dict[str, Any]) | ||
def run(self, documents: List[Document]) -> Dict[str, Any]: | ||
""" | ||
Extract metadata from documents using a Language Model. | ||
:param documents: List of documents to extract metadata from. | ||
:returns: | ||
A dictionary with the keys: | ||
- "documents": List of documents with extracted metadata. | ||
- "errors": A dictionary with document IDs as keys and error messages as values. | ||
""" | ||
errors = {} | ||
for document in documents: | ||
prompt_with_doc = self.builder.run(input_text=document.content) | ||
result = self.llm_provider.run(prompt=prompt_with_doc["prompt"]) | ||
llm_answer = result["replies"][0] | ||
if self.is_valid_json_and_has_expected_keys(expected=self.expected_keys, received=llm_answer): | ||
extracted_metadata = json.loads(llm_answer) | ||
for k in self.expected_keys: | ||
document.meta[k] = extracted_metadata[k] | ||
else: | ||
errors[document.id] = llm_answer | ||
|
||
return {"documents": documents, "errors": errors} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# SPDX-FileCopyrightText: 2022-present deepset GmbH <[email protected]> | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 |
Oops, something went wrong.