Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: add recursively merge of documents by their parents if they meet the threshold #162

Merged
merged 21 commits into from
Jan 7, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ class AutoMergingRetriever:
from haystack_experimental.components.retrievers.auto_merging_retriever import AutoMergingRetriever
from haystack.document_stores.in_memory import InMemoryDocumentStore

# create a hierarchical document structure with 2 levels, where the parent document has 3 children
# create a hierarchical document structure with 3 levels, where the parent document has 3 children
text = "The sun rose early in the morning. It cast a warm glow over the trees. Birds began to sing."
original_document = Document(content=text)
builder = HierarchicalDocumentSplitter(block_sizes=[10, 3], split_overlap=0, split_by="word")
Expand Down Expand Up @@ -113,45 +113,57 @@ def _check_valid_documents(matched_leaf_documents: List[Document]):
raise ValueError("The matched leaf documents do not have the required meta field '__block_size'")

@component.output_types(documents=List[Document])
def run(self, matched_leaf_documents: List[Document]):
def run(self, documents: List[Document]):
"""
Run the AutoMergingRetriever.

Groups the matched leaf documents by their parent documents and returns the parent documents if the number of
matched leaf documents below the same parent is higher than the defined threshold. Otherwise, returns the
matched leaf documents.
Recursively groups documents by their parents and merges them if they meet the threshold,
continuing up the hierarchy until no more merges are possible.

:param matched_leaf_documents: List of leaf documents that were matched by a retriever
:param documents: List of leaf documents that were matched by a retriever
:returns:
List of parent documents or matched leaf documents based on the threshold value
List of documents (could be a mix of different hierarchy levels)
"""

docs_to_return = []

# group the matched leaf documents by their parent documents
parent_documents: Dict[str, List[Document]] = defaultdict(list)
for doc in matched_leaf_documents:
parent_documents[doc.meta["__parent_id"]].append(doc)

# find total number of children for each parent document
for doc_id, retrieved_child_docs in parent_documents.items():
parent_doc = self.document_store.filter_documents({"field": "id", "operator": "==", "value": doc_id})
if len(parent_doc) == 0:
raise ValueError(f"Parent document with id {doc_id} not found in the document store.")
if len(parent_doc) > 1:
raise ValueError(f"Multiple parent documents found with id {doc_id} in the document store.")
if not parent_doc[0].meta.get("__children_ids"):
raise ValueError(f"Parent document with id {doc_id} does not have any children.")
parent_children_count = len(parent_doc[0].meta["__children_ids"])

# return either the parent document or the matched leaf documents based on the threshold value
score = len(retrieved_child_docs) / parent_children_count
if score >= self.threshold:
# return the parent document
docs_to_return.append(parent_doc[0])
else:
# return all the matched leaf documents which are child of this parent document
leafs_ids = {doc.id for doc in retrieved_child_docs}
docs_to_return.extend([doc for doc in matched_leaf_documents if doc.id in leafs_ids])

return {"documents": docs_to_return}
AutoMergingRetriever._check_valid_documents(documents)

def _get_parent_doc(parent_id: str) -> Document:
parent_docs = self.document_store.filter_documents({"field": "id", "operator": "==", "value": parent_id})
if len(parent_docs) != 1:
raise ValueError(f"Expected 1 parent document with id {parent_id}, found {len(parent_docs)}")

parent_doc = parent_docs[0]
if not parent_doc.meta.get("__children_ids"):
raise ValueError(f"Parent document with id {parent_id} does not have any children.")

return parent_doc

def _try_merge_level(docs_to_merge: List[Document], docs_to_return: List[Document]) -> List[Document]:
parent_doc_id_to_child_docs: Dict[str, List[Document]] = defaultdict(list) # to group documents by parent

for doc in docs_to_merge:
if doc.meta.get("__parent_id"): # only docs that have parents
parent_doc_id_to_child_docs[doc.meta["__parent_id"]].append(doc)
else:
docs_to_return.append(doc) # keep docs that have no parents

# Process each parent group
merged_docs = []
for parent_doc_id, child_docs in parent_doc_id_to_child_docs.items():
parent_doc = _get_parent_doc(parent_doc_id)

# Calculate merge score
score = len(child_docs) / len(parent_doc.meta["__children_ids"])
if score > self.threshold:
merged_docs.append(parent_doc) # Merge into parent
else:
docs_to_return.extend(child_docs) # Keep children separate

# if no new merges were made, we're done
if not merged_docs:
return merged_docs + docs_to_return

# Recursively try to merge the next level
return _try_merge_level(merged_docs, docs_to_return)

return {"documents": _try_merge_level(documents, [])}
209 changes: 196 additions & 13 deletions test/components/retrievers/test_auto_merging_retriever.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,8 @@
from haystack_experimental.components.retrievers.auto_merging_retriever import AutoMergingRetriever
from haystack.document_stores.in_memory import InMemoryDocumentStore


class TestAutoMergingRetriever:

def test_init_default(self):
retriever = AutoMergingRetriever(InMemoryDocumentStore())
assert retriever.threshold == 0.5
Expand All @@ -20,6 +20,72 @@ def test_init_with_invalid_threshold(self):
with pytest.raises(ValueError):
AutoMergingRetriever(InMemoryDocumentStore(), threshold=-2)

def test_run_missing_parent_id(self):
docs = [
Document(
content="test",
meta={
"__level": 1,
"__block_size": 10,
},
)
]
retriever = AutoMergingRetriever(InMemoryDocumentStore())
with pytest.raises(ValueError, match="The matched leaf documents do not have the required meta field '__parent_id'"):
retriever.run(documents=docs)

def test_run_missing_level(self):
docs = [
Document(
content="test",
meta={
"__parent_id": "parent1",
"__block_size": 10,
},
)
]

retriever = AutoMergingRetriever(InMemoryDocumentStore())
with pytest.raises(ValueError, match="The matched leaf documents do not have the required meta field '__level'"):
retriever.run(documents=docs)

def test_run_missing_block_size(self):
docs = [
Document(
content="test",
meta={
"__parent_id": "parent1",
"__level": 1,
},
)
]

retriever = AutoMergingRetriever(InMemoryDocumentStore())
with pytest.raises(ValueError, match="The matched leaf documents do not have the required meta field '__block_size'"):
retriever.run(documents=docs)

def test_run_mixed_valid_and_invalid_documents(self):
docs = [
Document(
content="valid",
meta={
"__parent_id": "parent1",
"__level": 1,
"__block_size": 10,
},
),
Document(
content="invalid",
meta={
"__level": 1,
"__block_size": 10,
},
),
]
retriever = AutoMergingRetriever(InMemoryDocumentStore())
with pytest.raises(ValueError, match="The matched leaf documents do not have the required meta field '__parent_id'"):
retriever.run(documents=docs)

def test_to_dict(self):
retriever = AutoMergingRetriever(InMemoryDocumentStore(), threshold=0.7)
expected = retriever.to_dict()
Expand All @@ -43,17 +109,82 @@ def test_from_dict(self):
retriever = AutoMergingRetriever.from_dict(data)
assert retriever.threshold == 0.7

def test_serialization_deserialization_pipeline(self):
pipeline = Pipeline()
doc_store_parents = InMemoryDocumentStore()
bm_25_retriever = InMemoryBM25Retriever(doc_store_parents)
auto_merging_retriever = AutoMergingRetriever(doc_store_parents, threshold=0.5)

pipeline.add_component(name="bm_25_retriever", instance=bm_25_retriever)
pipeline.add_component(name="auto_merging_retriever", instance=auto_merging_retriever)
pipeline.connect("bm_25_retriever.documents", "auto_merging_retriever.documents")
pipeline_dict = pipeline.to_dict()

new_pipeline = Pipeline.from_dict(pipeline_dict)
assert new_pipeline == pipeline

def test_run_parent_not_found(self):
doc_store = InMemoryDocumentStore()
retriever = AutoMergingRetriever(doc_store, threshold=0.5)

# a leaf document with a non-existent parent_id
leaf_doc = Document(
content="test",
meta={
"__parent_id": "non_existent_parent",
"__level": 1,
"__block_size": 10,
}
)

with pytest.raises(ValueError, match="Expected 1 parent document with id non_existent_parent, found 0"):
retriever.run([leaf_doc])

def test_run_parent_without_children_metadata(self):
"""Test case where a parent document exists but doesn't have the __children_ids metadata field"""
doc_store = InMemoryDocumentStore()

# Create and store a parent document without __children_ids metadata
parent_doc = Document(
content="parent content",
id="parent1",
meta={
"__level": 1, # Add other required metadata
"__block_size": 10
}
)
doc_store.write_documents([parent_doc])

retriever = AutoMergingRetriever(doc_store, threshold=0.5)

# Create a leaf document that points to this parent
leaf_doc = Document(
content="leaf content",
meta={
"__parent_id": "parent1",
"__level": 2,
"__block_size": 5
}
)

with pytest.raises(ValueError, match="Parent document with id parent1 does not have any children"):
retriever.run([leaf_doc])

def test_run_empty_documents(self):
retriever = AutoMergingRetriever(InMemoryDocumentStore())
assert retriever.run([]) == {"documents": []}

def test_run_return_parent_document(self):
text = "The sun rose early in the morning. It cast a warm glow over the trees. Birds began to sing."

docs = [Document(content=text)]
builder = HierarchicalDocumentSplitter(block_sizes={10, 3}, split_overlap=0, split_by="word")
docs = builder.run(docs)

# store level-1 parent documents and initialize the retriever
# store all non-leaf documents
doc_store_parents = InMemoryDocumentStore()
for doc in docs["documents"]:
if doc.meta["__children_ids"] and doc.meta["__level"] == 1:
if doc.meta["__children_ids"]:
doc_store_parents.write_documents([doc])
retriever = AutoMergingRetriever(doc_store_parents, threshold=0.5)

Expand Down Expand Up @@ -100,16 +231,68 @@ def test_run_return_leafs_document_different_parents(self):
assert len(result['documents']) == 2
assert result['documents'][0].meta["__parent_id"] != result['documents'][1].meta["__parent_id"]

def test_serialization_deserialization_pipeline(self):
pipeline = Pipeline()
def test_run_go_up_hierarchy_multiple_levels(self):
"""
Test if the retriever can go up the hierarchy multiple levels to find the parent document.

Simulate a scenario where we have 4 leaf-documents that matched some initial query. The leaf-documents
are continuously merged up the hierarchy until the threshold is no longer met.
In this case it goes from the 4th level in the hierarchy up the 1st level.
"""
text = "The sun rose early in the morning. It cast a warm glow over the trees. Birds began to sing."

docs = [Document(content=text)]
builder = HierarchicalDocumentSplitter(block_sizes={6, 4, 2, 1}, split_overlap=0, split_by="word")
docs = builder.run(docs)

# store all non-leaf documents
doc_store_parents = InMemoryDocumentStore()
bm_25_retriever = InMemoryBM25Retriever(doc_store_parents)
auto_merging_retriever = AutoMergingRetriever(doc_store_parents, threshold=0.5)
for doc in docs["documents"]:
if doc.meta["__children_ids"]:
doc_store_parents.write_documents([doc])
retriever = AutoMergingRetriever(doc_store_parents, threshold=0.4)

pipeline.add_component(name="bm_25_retriever", instance=bm_25_retriever)
pipeline.add_component(name="auto_merging_retriever", instance=auto_merging_retriever)
pipeline.connect("bm_25_retriever.documents", "auto_merging_retriever.matched_leaf_documents")
pipeline_dict = pipeline.to_dict()
retrieved_leaf_docs_id = [
'8e65095a31fe5da857e4f939198217d961ea2d5052a4d0f587ec5fc78c743779',
'00409c91c6bb2a989565e963f563aa5a081f6054ab8b7a9307246b3cc0f0d352',
'e88945a30bec3e084e6aa528bcc940b4a78b6a6353c4243632be3aae84a7f532',
'2d0cc69c40911586d51e3e9afbfed50a0b85475dcbd524c01b46ccf5bdc54d48'
]

new_pipeline = Pipeline.from_dict(pipeline_dict)
assert new_pipeline == pipeline
retrieved_leaf_docs = [d for d in docs['documents'] if d.id in retrieved_leaf_docs_id]
result = retriever.run(retrieved_leaf_docs)

assert len(result['documents']) == 1
assert result['documents'][0].content == 'The sun rose early in the '

def test_run_go_up_hierarchy_multiple_levels_hit_root_document(self):
"""
Test case where we go up hierarchy until the root document, so the root document is returned.

It's the only document in the hierarchy which has no parent.
"""
text = "The sun rose early in the morning. It cast a warm glow over the trees. Birds began to sing."

docs = [Document(content=text)]
builder = HierarchicalDocumentSplitter(block_sizes={6, 4}, split_overlap=0, split_by="word")
docs = builder.run(docs)

# store all non-leaf documents
doc_store_parents = InMemoryDocumentStore()
for doc in docs["documents"]:
if doc.meta["__children_ids"]:
doc_store_parents.write_documents([doc])
retriever = AutoMergingRetriever(doc_store_parents, threshold=0.1) # set a low threshold to hit root document

retrieved_leaf_docs_id = [
'7e654d8ae21cc9807e4c377288a590efe7a6d86606676e51992cf719a03a3f42',
'acb19c71330c1f7515046bbcbacfcdf8fe21d273c40485a6b3f6b8ea13d4adec',
'98480d4a5f97ebd330d2bc06640692d52a8af2265e2ea0e87abf09d6472c7af9',
'a61b5a9ea9edfbd1572c02f7289c644128dd144a476f9e349bd35fdc93590610'
]

retrieved_leaf_docs = [d for d in docs['documents'] if d.id in retrieved_leaf_docs_id]
result = retriever.run(retrieved_leaf_docs)

assert len(result['documents']) == 1
assert result['documents'][0].meta["__level"] == 0 # hit root document
Loading