Skip to content

deepvk/MaDB

Repository files navigation

githubio Code style: black

MaDB 🗣 🎙️🎙️🎙️🎙️

MaDB - Masked Denoise Beamformer

Beamformer: MVDR (Minimum Variance Distortionless Response)

Structure

  • config ‒ configuration file
  • scripts ‒ different useful scripts, e.g. inference and training
  • src ‒ main source code
  • web_streamlit ‒ source code for the inference in web service

Installation

(Optional) Create new venv or conda env

Then just pip install -r requirements.txt

Note that there may be some problems with torch installation. If so, follow official PyTorch instructions

Docker

To set up environment with Docker

If you don't have Docker installed, please follow the links to find installation instructions for Ubuntu, Mac or Windows.

Build docker image:

docker build -t beamform .

Run docker image:

bash run_docker.sh

Data

We used the following datasets:

  • For training: librispeech-clean-100.
  • For validation: librispeech-test-clean.
  • Noise datasets: MUSAN and DEMAND.

LIBRISPEECH dataset MUSAN dataset Demand dataset

Training

  1. Configure train arguments in config/config.py.

  2. Run:

     python -m scripts.train
    

Inference

  1. Configure inference arguments in config/config.py.

  2. Run:

     python -m scripts.inference
    

Web Inference

The service implements the calculation of the NISQA-s metric

  1. Clone repository

     git clone https://github.com/deepvk/NISQA-s.git ./web-streamlit/NISQAs
    
  2. Change web_streamlit/NISQAs/config/nisqa_s.yaml:

ckp: src/weights/nisqa_s.tar --> web_streamlit/NISQAs/src/weights/nisqa_s.tar
  1. Run:

     python -m streamlit run web_streamlit/app.py
    

Metrics

Used https://github.com/deepvk/NISQA-s

NOI - noisiness

COL - coloration

DISC - discontinuty

LOUD - loudness

MOS - mean opinion score

We have generated a dataset (100 tracks) using pyroomacustics with various configurations. For the noise source, we used noise from the demand data

Method NOI COL DISC LOUD MOS
Original 1.7 2.27 2.8 2.46 2.76
MVDR 1.87 2.68 2.9 2.64 2.48
MVDR stream 1.66 2.5 2.78 2.56 2.24
SDWMW 1.77 2.39 2.75 2.51 2.82

About

MaDB - Masked Denoise Beamformer

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages