Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add "checkpoint_mode" kwarg to plotting #99

Merged
merged 5 commits into from
Apr 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
89 changes: 77 additions & 12 deletions notebooks/per_token_plot.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,21 +2,53 @@
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "696575431f65420e9dc22c3b3476bfbb",
"model_id": "fbda6a916fe84814be64a40423196d76",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Dropdown(description='Token Category:', options=('nouns', 'verbs', 'prepositions', 'adjectives'…"
"FigureWidget({\n",
" 'data': [{'line': {'width': 0},\n",
" 'marker': {'color': 'rgba(68, 68, 68, 0.3)'},\n",
" 'mode': 'lines',\n",
" 'name': 'Upper Bound',\n",
" 'showlegend': False,\n",
" 'type': 'scatter',\n",
" 'uid': 'a3590fcd-466d-4a73-b167-194ab728efcd',\n",
" 'x': [0, 1, 2, ..., 497, 498, 499],\n",
" 'y': array([2.34006592, 2.41241021, 2.57781922, ..., 2.56474203, 2.59573629,\n",
" 2.43304471])},\n",
" {'fill': 'tonexty',\n",
" 'fillcolor': 'rgba(68, 68, 68, 0.3)',\n",
" 'line': {'width': 0},\n",
" 'marker': {'color': 'rgba(68, 68, 68, 0.3)'},\n",
" 'mode': 'lines',\n",
" 'name': 'Lower Bound',\n",
" 'showlegend': False,\n",
" 'type': 'scatter',\n",
" 'uid': 'fda82808-c8ff-4b6c-878d-c76d66c8ce17',\n",
" 'x': [0, 1, 2, ..., 497, 498, 499],\n",
" 'y': array([0.93626447, 0.9302987 , 0.99836227, ..., 0.95607835, 0.76146911,\n",
" 0.81709211])},\n",
" {'marker': {'color': 'rgb(31, 119, 180)', 'line': {'color': 'rgb(31, 119, 180)', 'width': 1}, 'size': 0},\n",
" 'mode': 'lines',\n",
" 'name': 'Means',\n",
" 'type': 'scatter',\n",
" 'uid': 'b11dfbd0-c130-4a97-a8ff-b8c753b95035',\n",
" 'x': [0, 1, 2, ..., 497, 498, 499],\n",
" 'y': array([1.3701917 , 1.4372206 , 1.53251235, ..., 1.55583357, 1.50179179,\n",
" 1.45715223])}],\n",
" 'layout': {'template': '...'}\n",
"})"
]
},
"execution_count": 5,
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
Expand All @@ -33,9 +65,10 @@
"random.seed(0)\n",
"\n",
"# generate mock data\n",
"model_names = ['llama2-100k', 'llama2-200k', 'llama2-1m', 'llama2-10m']\n",
"# model_names = ['llama2-100k', 'llama2-200k', 'llama2-1m', 'llama2-10m', \"0\"]\n",
"model_names = list(range(500))\n",
"categories = ['nouns', 'verbs', 'prepositions', 'adjectives']\n",
"entries = [200, 100, 150, 300]\n",
"entries = [200, 100, 150, 300, 100]*100\n",
"performance_data = defaultdict()\n",
"for i, model in enumerate(model_names):\n",
" performance_data[model] = defaultdict()\n",
Expand All @@ -47,32 +80,64 @@
" performance_data[model][cat] = (-means, err_low, err_hi)\n",
"\n",
"\n",
"visualize_per_token_category(performance_data, log_scale=True, bg_color='LightGrey', line_color=\"Red\", marker_color='Orange', bar_color='Green')"
"visualize_per_token_category(performance_data, log_scale=True, checkpoint_mode=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cb3af5248a4a40118c36a527c927289d",
"model_id": "993e5d66ae56462a8eeec2c9ac6bd972",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(Dropdown(description='Token Category:', options=('nouns', 'verbs', 'prepositions', 'adjectives'…"
"FigureWidget({\n",
" 'data': [{'line': {'width': 0},\n",
" 'marker': {'color': 'wheat'},\n",
" 'mode': 'lines',\n",
" 'name': 'Upper Bound',\n",
" 'showlegend': False,\n",
" 'type': 'scatter',\n",
" 'uid': '56999008-205c-4592-a3f7-ea61e3e09d8e',\n",
" 'x': [0, 1, 2, ..., 497, 498, 499],\n",
" 'y': array([2.34006592, 2.41241021, 2.57781922, ..., 2.56474203, 2.59573629,\n",
" 2.43304471])},\n",
" {'fill': 'tonexty',\n",
" 'fillcolor': 'wheat',\n",
" 'line': {'width': 0},\n",
" 'marker': {'color': 'wheat'},\n",
" 'mode': 'lines',\n",
" 'name': 'Lower Bound',\n",
" 'showlegend': False,\n",
" 'type': 'scatter',\n",
" 'uid': 'be8a04f1-b8c4-46af-bf5e-03c942eff19f',\n",
" 'x': [0, 1, 2, ..., 497, 498, 499],\n",
" 'y': array([0.93626447, 0.9302987 , 0.99836227, ..., 0.95607835, 0.76146911,\n",
" 0.81709211])},\n",
" {'marker': {'color': 'Orange', 'line': {'color': 'Orange', 'width': 1}, 'size': 0},\n",
" 'mode': 'lines',\n",
" 'name': 'Median',\n",
" 'type': 'scatter',\n",
" 'uid': '85fe5113-70fb-4aa7-9821-947287d84e1d',\n",
" 'x': [0, 1, 2, ..., 497, 498, 499],\n",
" 'y': array([1.3701917 , 1.4372206 , 1.53251235, ..., 1.55583357, 1.50179179,\n",
" 1.45715223])}],\n",
" 'layout': {'template': '...'}\n",
"})"
]
},
"execution_count": 3,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"visualize_per_token_category(performance_data, log_scale=False)"
"visualize_per_token_category(performance_data, log_scale=True, checkpoint_mode=True, line_metric=\"Median\", line_color='Orange' , shade_color=\"wheat\")"
]
}
],
Expand Down
100 changes: 66 additions & 34 deletions src/delphi/eval/vis_per_token_model.py
Original file line number Diff line number Diff line change
@@ -1,67 +1,99 @@
from typing import Union

import ipywidgets
import numpy as np
import plotly.graph_objects as go


def visualize_per_token_category(
input: dict[str, dict[str, tuple]], log_scale=False, **kwargs: str
) -> ipywidgets.VBox:
model_names = list(input.keys())
categories = list(input[model_names[0]].keys())
input: dict[Union[str, int], dict[str, tuple]],
log_scale=False,
line_metric="Means",
checkpoint_mode=True,
shade_color="rgba(68, 68, 68, 0.3)",
line_color="rgb(31, 119, 180)",
bar_color="purple",
marker_color="SkyBlue",
background_color="AliceBlue",
) -> go.FigureWidget:
input_x = list(input.keys())
categories = list(input[input_x[0]].keys())
category = categories[0]

def get_hovertexts(mid: np.ndarray, lo: np.ndarray, hi: np.ndarray) -> list[str]:
return [f"Loss: {m:.3f} ({l:.3f}, {h:.3f})" for m, l, h in zip(mid, lo, hi)]

def get_plot_values(category: str) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
x = np.array([input[name][category] for name in model_names]).T
x = np.array([input[x][category] for x in input_x]).T
means, err_lo, err_hi = x[0], x[1], x[2]
return means, err_lo, err_hi

means, err_low, err_hi = get_plot_values(category)
g = go.FigureWidget(
data=go.Scatter(
x=model_names,
means, err_lo, err_hi = get_plot_values(category)

if checkpoint_mode:
scatter_plot = go.Figure(
[
go.Scatter(
name="Upper Bound",
x=input_x,
y=means + err_hi,
mode="lines",
marker=dict(color=shade_color),
line=dict(width=0),
showlegend=False,
),
go.Scatter(
name="Lower Bound",
x=input_x,
y=means - err_lo,
marker=dict(color=shade_color),
line=dict(width=0),
mode="lines",
fillcolor=shade_color,
fill="tonexty",
showlegend=False,
),
go.Scatter(
name=line_metric,
x=input_x,
y=means,
mode="lines",
marker=dict(
color=line_color,
size=0,
line=dict(color=line_color, width=1),
),
),
]
)
else:
scatter_plot = go.Scatter(
x=input_x,
y=means,
error_y=dict(
type="data",
symmetric=False,
array=err_hi,
arrayminus=err_low,
color=kwargs.get("bar_color", "purple"),
arrayminus=err_lo,
color=bar_color,
),
marker=dict(
color=kwargs.get("marker_color", "SkyBlue"),
color=marker_color,
size=15,
line=dict(color=kwargs.get("line_color", "MediumPurple"), width=2),
line=dict(color=line_color, width=2),
),
hovertext=get_hovertexts(means, err_low, err_hi),
hovertext=get_hovertexts(means, err_lo, err_hi),
hoverinfo="text+x",
),
)
g = go.FigureWidget(
data=scatter_plot,
layout=go.Layout(
yaxis=dict(
title="Loss",
type="log" if log_scale else "linear",
),
plot_bgcolor=kwargs.get("bg_color", "AliceBlue"),
plot_bgcolor=background_color,
),
)

selected_category = ipywidgets.Dropdown(
options=categories,
placeholder="",
description="Token Category:",
disabled=False,
)

def response(change):
means, err_lo, err_hi = get_plot_values(selected_category.value)
with g.batch_update():
g.data[0].y = means
g.data[0].error_y["array"] = err_hi
g.data[0].error_y["arrayminus"] = err_lo
g.data[0].hovertext = get_hovertexts(means, err_lo, err_hi)

selected_category.observe(response, names="value")

return ipywidgets.VBox([selected_category, g])
return g
Loading