Skip to content

Reactive crowd simulator used in the IROS 2020 paper: "L2B: Learning to Balance the Safety-Efficiency Trade-off in Interactive Crowd-aware Robot Navigation"

License

Notifications You must be signed in to change notification settings

denkiwakame/Python-ERVO

Repository files navigation

Python-ERVO

demodemo2

Dependencies

  • CMake 3.1+
  • Cython 0.21.1+

Setup

$ pip install -r requirements.txt
$ python setup.py build      # build
$ python setup.py install    # build & install

Usage

  • For more details, see example_ervo.py
# original RVO
sim_rvo = rvo2.PyRVOSimulator(time_step, *params, radius, max_speed)
sim_rvo.doStep()

# extended ERVO
sim_ervo = rvo2.PyERVOSimulator(time_step, *params, radius, max_speed)
sim_ervo.doStep((beep_agent.px, beep_agent.py), beep_radius)

Citation

If you find the simulator useful for your research, please consider citing:

@inproceedings{nishimura2020l2b,
  title={L2B: Learning to Balance the Safety-Efficiency Trade-off in Interactive Crowd-aware Robot Navigation},
  author={Nishimura, Mai and Yonetani, Ryo},
  journal={IEEE/RSJ International Conference on Intelligent Robots and Systems},
  year={2020},
  publisher={IEEE}
}

@incollection{van2011reciprocal,
  title={Reciprocal n-body collision avoidance},
  author={Van Den Berg, Jur and Guy, Stephen J and Lin, Ming and Manocha, Dinesh},
  booktitle={Robotics research},
  pages={3--19},
  year={2011},
  publisher={Springer}
}

About

Reactive crowd simulator used in the IROS 2020 paper: "L2B: Learning to Balance the Safety-Efficiency Trade-off in Interactive Crowd-aware Robot Navigation"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published