forked from cad-audio/executorch
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adding pow, remainder, minimum, maximum operators (#33)
* adding pow, remainder, minimum, maximum operators * adding pow, remainder, minimum, maximum operators
- Loading branch information
1 parent
9b71aed
commit 07743ab
Showing
12 changed files
with
3,451 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
/* | ||
* Copyright (c) Meta Platforms, Inc. and affiliates. | ||
* All rights reserved. | ||
* | ||
* This source code is licensed under the BSD-style license found in the | ||
* LICENSE file in the root directory of this source tree. | ||
*/ | ||
|
||
#include <executorch/backends/cadence/hifi/kernels/kernels.h> | ||
#include <executorch/kernels/portable/cpu/scalar_utils.h> | ||
#include <executorch/kernels/portable/cpu/util/broadcast_util.h> | ||
#include <executorch/kernels/portable/cpu/util/math_util.h> | ||
#include <executorch/runtime/kernel/kernel_includes.h> | ||
|
||
using exec_aten::ScalarType; | ||
using exec_aten::Tensor; | ||
using executorch::aten::RuntimeContext; | ||
using executorch::runtime::can_cast; | ||
using executorch::runtime::canCast; | ||
using executorch::runtime::CppTypeToScalarType; | ||
using executorch::runtime::promoteTypes; | ||
using torch::executor::apply_binary_elementwise_fn; | ||
using torch::executor::Error; | ||
using torch::executor::resize_to_broadcast_target_size; | ||
|
||
namespace impl { | ||
namespace HiFi { | ||
namespace native { | ||
namespace { | ||
|
||
template < | ||
bool can_cast, | ||
typename CTYPE_A, | ||
typename CTYPE_B, | ||
typename CTYPE_IN, | ||
typename CTYPE_OUT> | ||
struct MaximumInner; | ||
|
||
template < | ||
typename CTYPE_A, | ||
typename CTYPE_B, | ||
typename CTYPE_IN, | ||
typename CTYPE_OUT> | ||
struct MaximumInner<true, CTYPE_A, CTYPE_B, CTYPE_IN, CTYPE_OUT> { | ||
static void run(const Tensor& a, const Tensor& b, Tensor& out) { | ||
apply_binary_elementwise_fn<CTYPE_A, CTYPE_B, CTYPE_OUT>( | ||
// NOLINTNEXTLINE(facebook-hte-ConstantArgumentPassByValue) | ||
[](const CTYPE_A val_a, const CTYPE_B val_b) { | ||
CTYPE_IN a_casted = static_cast<CTYPE_IN>(val_a); | ||
CTYPE_IN b_casted = static_cast<CTYPE_IN>(val_b); | ||
CTYPE_IN value = | ||
torch::executor::native::utils::max_override(a_casted, b_casted); | ||
|
||
return static_cast<CTYPE_OUT>(value); | ||
}, | ||
a, | ||
b, | ||
out); | ||
} | ||
}; | ||
|
||
struct ReportCanCastBug { | ||
static void run(const Tensor&, const Tensor&, Tensor&) { | ||
ET_DCHECK_MSG(false, "BUG: canCast should have been checked above"); | ||
} | ||
}; | ||
|
||
template < | ||
typename CTYPE_A, | ||
typename CTYPE_B, | ||
typename CTYPE_IN, | ||
typename CTYPE_OUT> | ||
struct MaximumInner<false, CTYPE_A, CTYPE_B, CTYPE_IN, CTYPE_OUT> | ||
: public ReportCanCastBug {}; | ||
|
||
} // namespace | ||
|
||
Tensor& maximum_out( | ||
RuntimeContext& ctx, | ||
const Tensor& a, | ||
const Tensor& b, | ||
Tensor& out) { | ||
(void)ctx; | ||
|
||
ET_KERNEL_CHECK( | ||
ctx, | ||
resize_to_broadcast_target_size(a, b, out) == Error::Ok, | ||
InvalidArgument, | ||
out); | ||
|
||
constexpr int kNnlibMaxDim = 4; /*fallback if broadcast and dim > 4 */ | ||
|
||
ScalarType a_type = a.scalar_type(); | ||
ScalarType b_type = b.scalar_type(); | ||
ScalarType common_type = promoteTypes(a_type, b_type, /*half_to_float*/ true); | ||
ScalarType out_type = out.scalar_type(); | ||
|
||
ET_KERNEL_CHECK(ctx, canCast(common_type, out_type), InvalidArgument, out); | ||
|
||
bool optimized = true; | ||
/*find broadcast*/ | ||
bool a_is_broadcasted = !out.sizes().equals(a.sizes()); | ||
bool b_is_broadcasted = !out.sizes().equals(b.sizes()); | ||
bool broadcast = (a_is_broadcasted || b_is_broadcasted); | ||
|
||
int max_dim = a.dim() > b.dim() ? a.dim() : b.dim(); | ||
max_dim = out.dim() > max_dim ? out.dim() : max_dim; | ||
|
||
if ((a_type != ScalarType::Float) || (b_type != ScalarType::Float)) | ||
optimized = false; | ||
if ((broadcast == true) && (max_dim > kNnlibMaxDim)) | ||
optimized = false; | ||
|
||
if (optimized) { | ||
float* a_data = a.mutable_data_ptr<float>(); | ||
float* b_data = b.mutable_data_ptr<float>(); | ||
float* out_data = out.mutable_data_ptr<float>(); | ||
|
||
if (broadcast == true) { | ||
int out_shape[kNnlibMaxDim]; | ||
int inp1_shape[kNnlibMaxDim]; | ||
int inp2_shape[kNnlibMaxDim]; | ||
|
||
for (int i = 0; i < kNnlibMaxDim; i++) { | ||
out_shape[i] = 1; | ||
inp1_shape[i] = 1; | ||
inp2_shape[i] = 1; | ||
} | ||
|
||
int off_o = kNnlibMaxDim - out.dim(); | ||
int off_a = kNnlibMaxDim - a.dim(); | ||
int off_b = kNnlibMaxDim - b.dim(); | ||
|
||
for (int i = 0; i < out.dim(); i++) { | ||
out_shape[i + off_o] = out.size(i); | ||
} | ||
|
||
for (int i = 0; i < a.dim(); i++) | ||
inp1_shape[i + off_a] = a.size(i); | ||
|
||
for (int i = 0; i < b.dim(); i++) | ||
inp2_shape[i + off_b] = b.size(i); | ||
|
||
xa_nn_elm_maximum_broadcast_4D_f32xf32_f32( | ||
out_data, out_shape, a_data, inp1_shape, b_data, inp2_shape); | ||
} else { | ||
xa_nn_elm_maximum_f32xf32_f32(out_data, a_data, b_data, out.numel()); | ||
} | ||
return out; | ||
} | ||
ET_SWITCH_REALHB_TYPES(a_type, ctx, "maximum.out", CTYPE_A, [&]() { | ||
ET_SWITCH_REALHB_TYPES(b_type, ctx, "maximum.out", CTYPE_B, [&]() { | ||
using CTYPE_IN = typename torch::executor:: | ||
promote_types<CTYPE_A, CTYPE_B, /*half_to_float*/ true>::type; | ||
ET_DCHECK(CppTypeToScalarType<CTYPE_IN>::value == common_type); | ||
ET_SWITCH_REALHB_TYPES(out_type, ctx, "maximum.out", CTYPE_OUT, [&]() { | ||
MaximumInner< | ||
can_cast<CTYPE_IN, CTYPE_OUT>::value, | ||
CTYPE_A, | ||
CTYPE_B, | ||
CTYPE_IN, | ||
CTYPE_OUT>::run(a, b, out); | ||
}); | ||
}); | ||
}); | ||
|
||
return out; | ||
} | ||
|
||
} // namespace native | ||
} // namespace HiFi | ||
} // namespace impl |
Oops, something went wrong.